Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Universidad Nacional de Ingeniería 
Comunicaciones II 
Conferencia 6: Modulación por Codificación de Pulsos (PCM) 
UNIDAD ...
Guía 
• PCM ó Modulación por Códigos de Pulsos 
• Sistema de Transmisión PCM 
• Rango Dinámico y eficiencia de codificació...
PCM ó Modulación por Códigos de Pulsos 
• En casi todos los países donde las 
redes PSTN se han digitalizados, 
las conver...
PCM ó Modulación por Códigos de Pulsos 
•PCM (Pulse Code Modulation) ó Modulación por Codificación de Pulsos 
atiende el t...
PCM ó Modulación por Códigos de Pulsos 
•El precio que se paga es que se incurre en mas ancho de banda. Un 
sistema PCM co...
PCM ó Modulación por Códigos de Pulsos 
Los valores de “q” deben 
Leerse como “D” 
Los valores de “e” deben 
Leerse como “...
PCM ó Modulación por Códigos de Pulsos 
•En la figura siguiente, tenemos el código b-bit PCM con b=3. Este código 
PCM es ...
Rango Dinámico 
• Un codificador uniforme utiliza intervalos de cuantización de longitud fija 
(tamaño de paso constante) ...
Rango Dinámico 
• Calculando el rango dinámico: 
÷ø 
÷ DR = V max 
æ 
ö 
V 
min 
ç çè 
= ÷ ÷ø ö 
æ 
DR dB P 
ç çè 
= 
V 
m...
Eficiencia de Codificación 
• El número de bits utilizado en PCM depende del Rango Dinámico (DR). 
•DR será siempre el máx...
Relación Señal a Ruido 
• Para determinar la relación Señal a Ruido en un sistema PCM, partamos de 
encontrar la potencia ...
Relación Señal a Ruido 
• La potencia de ruido de cuantización es: 2 = D2 /12 Q s 
• La potencia de la señal en general es...
Relación Señal a Ruido 
• Ejemplo 
• Para señales de voz la relación señal a ruido de cuantización para 
comunicaciones te...
Ejemplo de grabación de música en CD 
• Si se desea establecer un buen rango dinámico para música grabada codificada 
digi...
Muestra de codificación PCM 
• Para ilustrar la técnica, se escucharán diversos registros, 
grabados con diversas frecuenc...
PCM No Uniforme 
• Señal de VOZ 
• Se observa el registro de una señal de voz grabada. 
• Nótese que la mayor energía está...
PCM No Uniforme 
Si se realiza un zoom sobre la parte señalada en verde aqua en el registro superior (la 
señal de la pala...
PCM No Uniforme 
•Aunque es posible reducir la distorsión o error de cuantización 
incrementando el número de niveles de c...
PCM No Uniforme 
•Un procedimiento de codificación mas eficiente se efectúa si los intervalos 
de cuantización no son unif...
Cuantifización Uniforme vs No uniforme 
• Cuantificación Uniforme 
– Ruido de cuantificación es intolerable para señales c...
Comparación Cuantización Uniforme vs. No Uniforme 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F21orm. Señales
Comparación Cuantización Uniforme vs. No Uniforme 
CUANTIZACIÓN NO UNIFORME 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte...
Companding 
•Por tanto, fue necesario idear un mecanismo basado en una técnica 
analógica denominada COMPANDING que implic...
Companding 
Patrón de voz 
reconstruido en el 
receptor SIN UTILIZAR 
COMPRESIÓN de la 
señal de voz original 
Note que el...
Companding 
Patrón de voz reconstruido en el receptor CON COMPRESIÓN de la señal de voz original 
El rango dinámico de la ...
Companding 
Sistema de Transmisión SIN companding 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F26orm. Señales
Companding 
Sistema de Transmisión CON companding 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F27orm. Señales
Companding 
•En las diapositivas 24 y 25 se muestran diagramas de pérdidas de 
potencias versus distancia de transmisión. ...
Q(.) no uniforme = Q(.) uniforme+Companding 
• Cuantificación No-uniforme puede implementarse a partir de un 
cuantificado...
PCM con Q(.) no uniforme 
CUANTIZACIÓN NO UNIFORME: COMPANDING ANALÓGICO 
•En el Transmisor la señal analógica es comprimi...
Función de Transferencia del Companding 
FUNCIONES DE 
TRANFERENCIAS 
DE LOS 
COMPRESORES 
Y EXPANSORES 
COM II - I. Zamor...
Companding (COMpressing-exPANDING) 
• Ley-μ en Norte América. 
x 
x x 
m 
+ 
ln[1 ( / )] max 
y y sgn 
max + 
m 
ln(1 ) 
=...
Companding 
xmax: Amplitud máxima de la señal de entrada no 
comprimida. 
ymax: Amplitud máxima de la señal de salida 
com...
Curvas de Companding 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F34orm. Señales
PCM con Q(.) no uniforme 
CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL 
•Implica la compresión en el transmisor después la...
Companding 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F36orm. Señales
Companding 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F37orm. Señales
PCM con Q(.) no uniforme 
CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL 
•El proceso de companding digital se asemeja mucho...
PCM con Q(.) no uniforme 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F39orm. Señales
PCM con Q(.) no uniforme 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F40orm. Señales
PCM con Q(.) no uniforme 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F41orm. Señales
PCM con Q(.) no uniforme 
CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL 
•En la tabla de codificación m255 de la diapositiv...
PCM con Q(.) no uniforme 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F43orm. Señales
PCM con Q(.) no uniforme 
CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL 
•En el segmento 2, hay una tasa de compresión de 2...
Proceso de compresión digital 
•La señal analógica se muestrea y se convierte en un código lineal (uniforme) 
de 12 bits (...
Proceso de compresión digital 
•El número de códigos por subsegmento se duplica con cada subsegmento. 
•Consecuentemente, ...
Proceso de compresión digital 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F47orm. Señales
Proceso de compresión digital 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F48orm. Señales
Proceso de compresión digital 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F49orm. Señales
Otro ejemplo: Generación onda PCM 
CIRCUITO CODIFICADOR PCM 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F50orm. Seña...
Regeneración de onda PCM 
•Procesos fundamentales en la recepción de onda PCM: 
•Regeneración, Decodificación y Filtrado 
...
Regeneración de onda PCM 
•Ecualizador: 
Da forma a los pulsos recibidos de tal manera que compensa los efectos de las 
di...
Regeneración de onda PCM 
El mismo pulso 
pero distorsionado 
g 
por el canal 
g 
T 
t=T 
t=T 
T 
Dispositivo de 
Regenera...
Regeneración de onda PCM 
•Decodificación 
Implica generar un pulso PAM cuantizado a “L” niveles cuya amplitud 
es la suma...
Regeneración de onda PCM 
CIRCUITO DECODIFICADOR PCM 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F55orm. Señales
CODEC PCM 
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F56orm. Señales
Tasa de transmisión digital (Ancho de Banda) 
ESQUEMA DEL TRANSMISOR 
Tasa de 
muestras 
retenidas = fS Tasa de bits = b*f...
COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F58orm. Señales
Upcoming SlideShare
Loading in …5
×

Lecture 6 formateo de señales en pcm

3,012 views

Published on

Telecom

Published in: Education

Lecture 6 formateo de señales en pcm

  1. 1. Universidad Nacional de Ingeniería Comunicaciones II Conferencia 6: Modulación por Codificación de Pulsos (PCM) UNIDAD II: CODIFICACIÓN FUENTE Y FORMATEO DE SEÑALES Instructor: Israel M. Zamora, P.E., MS Telecommunications Management Profesor Titular, Departamento de Sistemas Digitales y Telecomunicaciones. Universidad Nacional de Ingeniería COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F1orm. Señales
  2. 2. Guía • PCM ó Modulación por Códigos de Pulsos • Sistema de Transmisión PCM • Rango Dinámico y eficiencia de codificación • PCM No Uniforme • Cuantización Uniforme y No Uniforme • Ilustración cuantización no uniforme • Comparación cuantización uniforme vs no uniforme • Función de transferencia • Companding • Q(.) no uniforme = Q(.) uniforme+Companding • Curvas de companding • PCM con Q(.) no uniforme • Proceso de compresión digital • PCM ó Modulación por Códigos de Pulsos • Generación onda PCM • Regeneración de onda PCM • CODEC PCM • Tasa de transmisión PCM COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F2orm. Señales
  3. 3. PCM ó Modulación por Códigos de Pulsos • En casi todos los países donde las redes PSTN se han digitalizados, las conversaciones telefónicas se realizan digitalizando las señales de voz. • La técnica básica que se utiliza se denomina PCM (Pulse Code Modulation). • En el formato básico, o canal B, la señal de voz se muestrea a una frecuencia de 8000 muestras por segundo. • Cada una de las muestras se codifica con 8 bits. • Luego, un canal B equivale a transmitir a 64 kbps. • La codificación no es lineal, como se verá luego, debido a las propiedades estadísticas de las amplitudes de las muestras. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F3orm. Señales
  4. 4. PCM ó Modulación por Códigos de Pulsos •PCM (Pulse Code Modulation) ó Modulación por Codificación de Pulsos atiende el teorema del muestreo de Nyquist. •El proceso de generación PCM requiere de tres pasos de procesamiento ya estudiados en la conferencia 4: muestreo/ retención, cuantización y codificación. •Es una forma básica de modulación de pulsos en la que una señal de mensaje analógica se representa en forma discreta tanto en tiempo como en amplitud, es decir en su equivalente digital. •Permite la transmisión de la señal mensaje analógico como una secuencia o corriente de pulsos binarios codificados, que posteriormente pueden o no ser modulados o condicionados. •La señal mensaje original analógica realmente nunca viaja en la señal transmitida. •Los pulsos binarios codificados representan sólo los niveles cuantizados de la versión cuantizada de la señal original y como ventaja pueden ser regenerados en puntos intermedios a lo largo de la trayectoria de transmisión así como en los extremos. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F4orm. Señales
  5. 5. PCM ó Modulación por Códigos de Pulsos •El precio que se paga es que se incurre en mas ancho de banda. Un sistema PCM convencional telefónico requiere 16 veces mas ancho de banda que la transmisión analógica de voz (una señal analógica de voz con 4KHz necesita 16x4KHz=64KHz si se transmite con PCM), asumiendo una eficienica de 1 bit por hertz de ancho de banda. •La codificación en realidad no es una forma tradicional de modulación!!! •Los códigos binarios usados en PCM son códigos del tipo b-bits donde b es el número de bits por código mayor que 1. •Los códigos PCM actuales son del tipo signo-magnitud, donde el bit mas significativo (MSB) es el bit de signo y los bits restantes son usados para la magnitud. 1 2 2 1 d d d d d b b- b-  MSB Signo (b-1) bits de Magnitud HHaayy ( b(b-1-1) )b bitists d dee m maaggnnitiutudd!!!!!! b = b -1 mag COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F5orm. Señales
  6. 6. PCM ó Modulación por Códigos de Pulsos Los valores de “q” deben Leerse como “D” Los valores de “e” deben Leerse como “q” COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F6orm. Señales
  7. 7. PCM ó Modulación por Códigos de Pulsos •En la figura siguiente, tenemos el código b-bit PCM con b=3. Este código PCM es denominado folded binary code. •Observe que, con excepción del bit de signo, los códigos en la mitad inferior de la tabla son una imagen especular de los códigos en la mitad superior. El MSB=1, signo (+) El MSB=0, signo (-) Observe que en este caso, al nivel 0 le corresponden dos códigos!!! Desventaja!!! COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F7orm. Señales
  8. 8. Rango Dinámico • Un codificador uniforme utiliza intervalos de cuantización de longitud fija (tamaño de paso constante) para todas las muestras y produces códigos linealmente relacionados con los valores muestras analógicos. •Un sistema PCM uniforme se usan un convertidor convencional analógico-a- digital para generar los códigos binarios de las muestras. •El número de bits necesarios por cada muestras está determinada por la potencia máxima de ruido aceptable. •La calidad mínima de la voz digitalizada requiere un razón señal-a-ruido en exceso de 26dB. •Además de proveer una calidad adecuada para señales pequeñas, un sistemas telefónico debe ser capaz de transmitir un gran rango de amplitudes de señal, referido como RANGO DINÁMICO (DR). •El rango dinámico (DR) normalmente se expresa en decibelios como la razón de la amplitud máxima posible a la amplitud mínima posible que puede decodificar el DAC (Digital/Analog Converter). Esta amplitud mínima corresponde al tamaño de paso o resolución. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F8orm. Señales
  9. 9. Rango Dinámico • Calculando el rango dinámico: ÷ø ÷ DR = V max æ ö V min ç çè = ÷ ÷ø ö æ DR dB P ç çè = V max V min ( ) 10log max 20log P min = D min V • Un valor típico de rango dinámico es de 30dB. •En un sistema PCM uniforme cada nivel de cuantización está determinado por los requerimientos de SQR del nivel mas bajo de señal que debe codificarse. •En PCM uniforme, la señales mas grandes son codificada con el mismo intervalo de cuantización (mismo tamaño de paso o resolución). •Un nivel de SQR de 26dB para una señal pequeña con rango dinámico de 30dB produciría un SQR 56dB para la amplitud máxima posible. •En PCM uniforme se provee calidad innecesaria a las señales grandes las cuales son las menos probables que ocurran pero se sacrifica la calidad con las señales pequeñas (ruido de cuantización mayor). •En PCM uniforme el espacio de códigos es utilizado muy ineficientemente. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F9orm. Señales
  10. 10. Eficiencia de Codificación • El número de bits utilizado en PCM depende del Rango Dinámico (DR). •DR será siempre el máximo número binario de un sistema. •Para determinar el número de bits requerido para un sistema de códigos PCM se debe utilizar la siguiente relación matemática. bmag DR 2 -1³ 2b-1 -1 = DR bmag =b-1 = número de bits PCM, SIN INCLUIR EL BIT DEL SIGNO!!! DR = Valor absoluto del Rango Dinámico • La eficiencia del código es una indicación numérica de qué tan eficiente se utiliza un código PCM. Se define como la razón entre el número de bits requeridos para alcanzar un determinado Rango Dinámico, y el número real de bits PCM utilizados. *100 1 h b (%) exacto + = práctico PCM b COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F10orm. Señales
  11. 11. Relación Señal a Ruido • Para determinar la relación Señal a Ruido en un sistema PCM, partamos de encontrar la potencia (valor cuadrático medio) de la señal de información. Para la señal, se considera que ésta se distribuye uniformemente en el rango: p p -V £ x £ V = [ ] = ò p ( ) = 0 - x V m E x xf x dx p V •Consideremos que la señal es ergódica, tomando la gráfica de la derecha, por lo que tenemos que su potencia normalizada es igual a la varianza de la señal: [ ] ò ò- - E x E x x f x dx x V V V 2 2 = - = = = p p p s 2 2 2 ( ( ) ( ) p p dx V 2 3 p x V V •Note que si usáramos un tono (e.j. 2 2 señal armónica sinusoidal), tendríamos: s =V / 2 x p •En el caso general, podemos obsevar que la potencia es proporcional a V2 p, es decir, s 2 = kV , con 2 k siendo una constante. x p p f (x) =1/ 2V COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F11orm. Señales f (x) i x Amplitud de x(t) p V p -V
  12. 12. Relación Señal a Ruido • La potencia de ruido de cuantización es: 2 = D2 /12 Q s • La potencia de la señal en general es: s 2 = kV 2 x p • Si se usan b bits para codificar la señal, y el MSB se atribuye como el bit de signo ( ±), entonces, podemos escribir: = 2b-1D p V • Con lo cual la potencia del ruido de cuantización puede expresarse como: b b 2 2 2 p 2 2 V V = D = - s 2( 1) = 12 12 (2 ) 3× 2 S 2 b p kV 2 p b p 2 Q × = • De aquí que la SQR puede expresarse como: q k æ × V N 2 = × × 3 2 3 2 ö ÷ ÷ø ç çè ö [dB] k b b S q • En decibelios: a N 10log ( 3) 6.02 6.02 10 + = + × = ÷ ÷ ø æ ç ç è COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F12orm. Señales
  13. 13. Relación Señal a Ruido • Ejemplo • Para señales de voz la relación señal a ruido de cuantización para comunicaciones telefónicas debe ser del orden de 36dB. • Si la señal de voz distribuye uniformemente en amplitud (lo cual no es cierto, como ser verá a continuación), entonces k=1/3, y el número de bits requerido será de: ö [dB] b b S q N 10log (1/ 3 3) 6.02 6.02 10 = + × = ÷ ÷ ø æ ç ç è b 6 £ 36 6.02 ³ 36 = b bits 6.02 COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F13orm. Señales
  14. 14. Ejemplo de grabación de música en CD • Si se desea establecer un buen rango dinámico para música grabada codificada digitalmente se puede considerar que 90 dB de rango dinámico y una señal de información limitada a 15 kHz por canal podría ser equivalente a una transmisión FM buena. • Esto requiere de una codificación de 15 b y una tasa de muestreo de 1,2·30 kHz = 36 kHz, o equivalentemente 540 kb/s. • Esto permitiría grabar un canal durante 650·8/0,54[s] = 160[min], sin capacidad de corrección de errores. • En cambio, la duración de una grabación estereofónica (2 canales) sería de 80 minutos. • Pregunta: si en la práctica se utiliza una frecuencia de muestreo de 44,1 kHz, codificación Reed-Solomon para corregir rayaduras y huellas digitales (2:1) en el CD y se pueden grabar 2 canales (stereo) por unos 75 min., • – ¿ cuántos bits se requieren para codificar c/u de los dos canales? • – ¿ cuál es la SNR resultante en cada canal, expresada en dB? COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F14orm. Señales
  15. 15. Muestra de codificación PCM • Para ilustrar la técnica, se escucharán diversos registros, grabados con diversas frecuencias de muestreo y codificados con diversos grados de precisión (cuantización): 1. Frecuencia de muestreo, constante = 10000 muestras/seg. No bits de cuantización variable por muestra, = 12, 9, 4, 2, 1 [bit]. 2. 12 bits bits de cuantización/muestra, Frecuencia de muestreo variable = 10, 5, 2.5, 1.25 [kmuestras/segundo]. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F15orm. Señales
  16. 16. PCM No Uniforme • Señal de VOZ • Se observa el registro de una señal de voz grabada. • Nótese que la mayor energía está centrada en las vocales. • Otro aspecto importante es la duración promedio de una vocal, (~30ms) COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F16orm. Señales
  17. 17. PCM No Uniforme Si se realiza un zoom sobre la parte señalada en verde aqua en el registro superior (la señal de la palabra Murciélago), se tendrá la figura inferior. Nótese que la mayoría de los valores de amplitud de la señal se concentran en las inmediaciones del valor cero. Muchos ciclos de la señal se repiten en forma casi idéntica. El muestreo (c/125μs) registra muchos valores en un ciclo. El comportamiento variable de la voz humana genera errores de cuantización tanto granular como de saturación, lo que conduciría al decodificador en el receptor a regenerar una señal altamente distorsionada. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F17orm. Señales
  18. 18. PCM No Uniforme •Aunque es posible reducir la distorsión o error de cuantización incrementando el número de niveles de cuantización, no sería eficiente en aplicaciones reales, particularmente para la transmisión de voz. •La transmisión de voz tiene un amplio rango dinámico, en el orden de 50dB, es decir, es el rango de niveles desde la sílaba pronunciada lo mas alto posible por un hablante que habla alto y la sílaba pronunciada lo mas bajo posible por un hablante que habla lo mas bajo posible. •Por ejemplo, si se usa un cuantizador lineal, se requiere de 2048 niveles discretos para una fidelidad total en cualquier caso; esto implica un total de 11 bits para cada palabra de código (211=2048), y con una frecuencia de muestro según Nyquist, tendríamos 88,000 bps, para un canal de voz y consecuentemente 88KHz de ancho de banda si se tiene una eficiencia de 1 bit/hertz, lo cual es demasiado ancho de banda por bit. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F18orm. Señales
  19. 19. PCM No Uniforme •Un procedimiento de codificación mas eficiente se efectúa si los intervalos de cuantización no son uniforme sino que se les permite que incrementen con el valor muestreado. •Cuando los intervalos de cuantización son directamente proporcional al valor de la muestra, el SQR es constante para todos los niveles. •Con esta técnica, denominada cuantización No Uniforme, se necesitarán menos bits por muestra para alcanzar una SQR específica para señales pequeñas y un rango dinámico adecuado para señales grandes. •Se dice que con intervalos (tamaño de paso o resolución) no uniforme, se establece una relación no lineal entre las palabra de códigos y las muestras que ellos representan. •Una ventaja en los sistemas PCM con cuantización No uniforme es la mejora en la calidad al reducirse el efecto del ruido término aleatorio que se presente durante periodos de no actividad (línea ociosa, ninguna señal analógica en la entrada). •Mejor resultado con cuantizador midtread •Desventaja con Midriser por un posible valor mayor de D. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F19orm. Señales
  20. 20. Cuantifización Uniforme vs No uniforme • Cuantificación Uniforme – Ruido de cuantificación es intolerable para señales con pendiente abruptas (rápidas) – Tamaño de paso es constante – Deficiente para señales de voz – Bajo valor de SNR • Cuantificación No uniforme – Mas apropiada para señales de voz. – Espectro de señal de voz: 20hz a 20Khz. – Rango de Inteligibilidad: 300hz a 3,400hz . – Cuantización de acuerdo a la intensidad espectral de la señal, permitiendo una mejor SNR COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F20orm. Señales
  21. 21. Comparación Cuantización Uniforme vs. No Uniforme COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F21orm. Señales
  22. 22. Comparación Cuantización Uniforme vs. No Uniforme CUANTIZACIÓN NO UNIFORME COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F22orm. Señales
  23. 23. Companding •Por tanto, fue necesario idear un mecanismo basado en una técnica analógica denominada COMPANDING que implica dos palabras: COMPression-exPANSION. •La Compresión toma lugar en el lado del circuito transmisor. •La Expansión toma lugar en el lado del circuito receptor. •La compresión reduce el rango dinámico afectando muy poco el nivel fidelidad, y la expansión retorna la señal a su condición normal. Señal Original No comprimida Señal Original No comprimida Señal Original Comprimida COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F23orm. Señales
  24. 24. Companding Patrón de voz reconstruido en el receptor SIN UTILIZAR COMPRESIÓN de la señal de voz original Note que el rango dinámico del patrón de voz excede el rango dinámico del convertidor ADC usado en el proceso de cuantización. Las amplitudes altas y bajas no son resueltas debido a la falta de niveles de cuantización!!! Como resultado, la caracterización del patrón de voz a través el proceso PCM es pobre!!! AMPLITUDES BAJAS AMPLITUDES ALTAS COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F24orm. Señales
  25. 25. Companding Patrón de voz reconstruido en el receptor CON COMPRESIÓN de la señal de voz original El rango dinámico de la señal ha sido comprimido dentro del rango de cuantización del convertidor ADC. Las amplitudes bajas son amplificadas a un nivel mayor que las variaciones de amplitud altas. El patrón de voz comprimido es una representación mucho mas parecida de la señal de voz original. La señal recuperada puede ahora ser expandidas a su nivel original. Mayor nivel de amplificación Menor nivel de amplificación COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F25orm. Señales
  26. 26. Companding Sistema de Transmisión SIN companding COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F26orm. Señales
  27. 27. Companding Sistema de Transmisión CON companding COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F27orm. Señales
  28. 28. Companding •En las diapositivas 24 y 25 se muestran diagramas de pérdidas de potencias versus distancia de transmisión. •Un repetidor de 20 dB se usa para amplificar la señal entre las estaciones de transmisión y recepción. •El sistema en la diapositiva 22 NO USA COMPANDING . La razón señal a ruido (SNR) se degrada de 80 a 55 dB para amplitudes pico. Las amplitudes de bajo nivel, originalmente a 20dB, eventualmente caen debajo del nivel de potencia de ruido del amplificador hasta -5dB. •Una mejoría en la SNR y una reducción en la probabilidad de saturación de los amplificadores se obtiene a través del proceso de companding. • Las señales fuertes y débiles se comprimen de un rango dinámico de 60dB a 30dB en el transmisor y se restaura a 60dB en extremo receptor. •La SNR se mantiene encima de la unidad a través de todo el sistema. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F28orm. Señales
  29. 29. Q(.) no uniforme = Q(.) uniforme+Companding • Cuantificación No-uniforme puede implementarse a partir de un cuantificador Uniforme • En el sistema transmisor, la señal se comprime antes de ser cuantizada, utilizando un módulo de cuantificación uniforme • En el sistema receptor, la señal desde el cuantizador se expande a fin de ser restaurada mientras se invierte el proceso de compresión Señal de Entrada Compresor Cuantizador Uniforme Señal de Expansor Decodificador Salida Medio COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F29orm. Señales
  30. 30. PCM con Q(.) no uniforme CUANTIZACIÓN NO UNIFORME: COMPANDING ANALÓGICO •En el Transmisor la señal analógica es comprimida, muestreada, y luego convertida en una código PCM lineal. •En el Receptor el código PCM se convierte en una señal PAM, se filtra y luego se expande de regreso a las características originales de amplitud de la señal original. •Hay dos métodos de companding analógico usados en la actualidad: La Ley-m y la Ley-A. •El sistema Bell de transmisión digital original solía usar código 7-bits PCM con m = 100. •Los sistemas mas recientes de transmisión digital usan 8-bit PCM con m=255. Señal de Entrada Analógica Compresor Analógico Muestreo & Retención Señal de Salida Analógica COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F30orm. Señales Medio BPF ADC PAM Codificador PCM BPF Expansor Analógico Retención DAC Circuito de regeneración PCM PAM TRANSMISOR PCM RECEPTOR PCM
  31. 31. Función de Transferencia del Companding FUNCIONES DE TRANFERENCIAS DE LOS COMPRESORES Y EXPANSORES COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F31orm. Señales
  32. 32. Companding (COMpressing-exPANDING) • Ley-μ en Norte América. x x x m + ln[1 ( / )] max y y sgn max + m ln(1 ) = • Ley-A en Europa y Latinoamérica (En Nicaragua) ì ï ï ï í ï ï ï î x sgn 0 < £ 1 x A max x sgn 1 < < 1 A x x ( / ) 1 ln max A A x x x 1 ln[ ( / )] + + + = 1 ln max max max max x A x A y y y COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F32orm. Señales
  33. 33. Companding xmax: Amplitud máxima de la señal de entrada no comprimida. ymax: Amplitud máxima de la señal de salida comprimida. |x|: Amplitud de la señal de entrada no comprimida en un instante particular de tiempo. m ó A: Parámetro usado para definir la cantidad de compresión (sea Ley-m ó Ley-A). y: Amplitud de la señal de salida comprimida COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F33orm. Señales
  34. 34. Curvas de Companding COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F34orm. Señales
  35. 35. PCM con Q(.) no uniforme CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL •Implica la compresión en el transmisor después la muestras de la señal analógica de entrada ha sido convertida a un código PCM uniforme (lineal). •Implica que la expansión en el receptor ocurre previo a la decodificación PCM. •Con companding digital, la señal analógica primer debe ser muestreada y convertida a en un código lineal, y luego el código lineal es comprimido digitalmente. •En el receptor, el código PCM comprimido se recibe, se expande y luego se decodifica. •El sistema mas reciente sistema PCM con companding digital usa 12 bits de codificación lineal y 8 bits para el código comprimido. Señal de Entrada Analógica Muestreo & Retención Señal de Salida Analógica PAM COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F35orm. Señales Medio BPF Compresor ADC Analógico Codificador PCM BPF Expansor Retención DAC Analógico Circuito de regeneración PCM PAM TRANSMISOR PCM RECEPTOR PCM
  36. 36. Companding COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F36orm. Señales
  37. 37. Companding COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F37orm. Señales
  38. 38. PCM con Q(.) no uniforme CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL •El proceso de companding digital se asemeja mucho la curva de compresión analógica con m = 255, al aproximar la curva a un conjunto de ocho segmentos líneas rectas (segmentos 0 a 7). •La pendiente de cada segmento sucesivo es exactamente la mitad de la pendiente del segmento previo. •La figura en la diapositiva #39 muestra la curva de compresión solo para valores positivos. La curva para valores negativos es idéntica, excepto que invertida (diapositiva #40). •Aunque hay 16 segmentos (ocho positivos y ocho negativos) este esquema es llamado a menudo COMPRESIÓN 13-SEGMENTOS. •En este algoritmo de compresión 12bits – a - 8 bits, el código resultante de 8 bits se compone de un bit del signo, un identificador de segmento de 3 bits, y un código de magnitud de 4 bits, con lo cual se identifica el intervalo de cuantización dentro de un segmento específico (ver diapositiva 43 figura (a)). COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F38orm. Señales
  39. 39. PCM con Q(.) no uniforme COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F39orm. Señales
  40. 40. PCM con Q(.) no uniforme COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F40orm. Señales
  41. 41. PCM con Q(.) no uniforme COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F41orm. Señales
  42. 42. PCM con Q(.) no uniforme CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL •En la tabla de codificación m255 de la diapositiva 43 (figura b), los bits de posición designados con X se truncan durante la compresión y consecuentemente se pierden. •Los bits designados como A, B, C y D son transmitidos como tales. •El bit de signo “s” también es transmitido como tal. Observe que para los 12 bits originales, los segmentos 0 y 1 se duplican exactamente a la salida de decodificador (ver diapositiva 43 figura c), mientras que para el segmento 7, solamente los 6 bits mas significativos se recuperan. •Con 11 bits de magnitud, hay 2048 códigos posibles. •Hay 16 códigos en el segmento 0 y en el segmento 1. •En el segmento 2, hay 32 códigos •En el segmento 3, hay 64 códigos. •Cada segmento sucesivo, comenzando por el segmento 3 tiene el doble número de código que el segmento previo. •En cada uno de los 8 segmentos solamente pueden recuperarse dieciséis códigos de 12 bits. Consecuentemente en segmentos 0 y 1 no hay compresión.(de 16 códigos posibles, todos los 16 pueden recuperarse). COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F42orm. Señales
  43. 43. PCM con Q(.) no uniforme COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F43orm. Señales
  44. 44. PCM con Q(.) no uniforme CUANTIZACIÓN NO UNIFORME: COMPANDING DIGITAL •En el segmento 2, hay una tasa de compresión de 2:1 (32 códigos posibles para transmisión y 16 códigos posibles de recuperar). •En el segmento 3, hay una tasa de compresión de 4:1 (64 códigos posibles para transmisión y 16 códigos posibles de recuperar). •La tasa de compresión se duplica con cada segmento sucesivo. •La tasa de compresión del segmento 7 es 2048/16 o 128:1. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F44orm. Señales
  45. 45. Proceso de compresión digital •La señal analógica se muestrea y se convierte en un código lineal (uniforme) de 12 bits (signo y magnitud). •El bit de signo es transferido directamente al código comprimido de 8 bits. •El segmento se determina contando el número de ceros iniciales en la porción de 11 bits de magnitud del código, comenzando con el MSB, •Se sustrae el número de ceros iniciales (sin exceder 7) del 7. •El resultado es el número del segmento, el cual se convierte en un número binario de 3 bits y se sustituye en el código de 8 bits como el identificador de segmento. •Los cuatro bits de magnitud (A, B, C y D) son los intervalos de cuantización y son sustituidos en los 4 bits menos significativos del código comprimido de 8 bits. •Esencialmente, los segmentos 2 a 7 se subdividen en subsegmentos mas pequeños. •Cada segmento tiene 16 subsegmentos, los cuales corresponden a las 16 posibles condiciones para los bits A, B, C y D (0000 – 1111). •En el segmento 2 hay dos códigos por subsegmento. •En el segmento 3 hay cuatro. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F45orm. Señales
  46. 46. Proceso de compresión digital •El número de códigos por subsegmento se duplica con cada subsegmento. •Consecuentemente, en el segmento 7, cada subsegmento tiene 64 códigos. •Las figuras de las diapositivas 47,48 y 49 muestran la desagregación de los segmentos versus subsegmentos 2, 5 y 7. •Observe que en cada subsegmento, todos los códigos de 12 bits, una vez que son comprimidos y expandidos, producen un código único de 12 bits. •En esta figura, se observa que los bits truncados mas significativos son reinsertados en el decodificador como un 1.Los restantes bits truncados se reinsertan como 0s. Esto asegura que la máxima magnitud de error introducido por el proceso de compresión y expansión sea mínimo. •Esencialmente, el decodificador estima cuales bits truncados fueron previo a la codificación. •La estimación mas lógica está en medio entre los códigos mínimo y máximos. En el segmento 5, por ejemplo, los 5 bits menos significativos fueron truncados durante la compresión. Las posibilidades son cualquier código entre 00000 y 11111. •Consecuentemente, el error máximo de compresión es ligeramente mayor que la mitad de la magnitud de ese segmento. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F46orm. Señales
  47. 47. Proceso de compresión digital COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F47orm. Señales
  48. 48. Proceso de compresión digital COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F48orm. Señales
  49. 49. Proceso de compresión digital COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F49orm. Señales
  50. 50. Otro ejemplo: Generación onda PCM CIRCUITO CODIFICADOR PCM COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F50orm. Señales
  51. 51. Regeneración de onda PCM •Procesos fundamentales en la recepción de onda PCM: •Regeneración, Decodificación y Filtrado •Regeneración: Es la capacidad del sistema para controlar los efectos de distorsión y ruido que se producen al transmitir una señal PCM por un canal. Esta capacidad se logra al construir la señal señal PCM mediante una cadena de REPETIDORES REGENERATIVOS ubicados a una distancia suficientemente próxima a lo largo de la ruta de transmisión. •El repetidor regenerativo lleva a cabo tres funciones básicas que son: •Ecualización •Temporización •Toma de Decisiones Amplificador ecualizador Dispositivo de toma de decisiones Circuito Temporizador Onda PCM distorsionada Onda PCM regenerada Diagrama de bloque del repetidor regenerativo COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F51orm. Señales
  52. 52. Regeneración de onda PCM •Ecualizador: Da forma a los pulsos recibidos de tal manera que compensa los efectos de las distorsiones de amplitud y fase que producen las características de transmisión no ideales del canal. •Temporizador: Proporciona un tren de pulsos periódicos, obtenidos de los pulsos recibidos, para muestrear los pulsos ecualizados en los instantes en los que la relación señal a ruido es un máximo. •Dispositivo Toma de Decisión: Realiza una comparación de la lectura de las muestras extraídas “Ak” con respecto a un umbral “m ” predeterminado en cada intervalo de bit para determinar si el símbolo “s” que se recibe (pulso) es un “1” ó un “0”. "1" si A μ î í ì > k = "0" si A < μ s k COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F52orm. Señales
  53. 53. Regeneración de onda PCM El mismo pulso pero distorsionado g por el canal g T t=T t=T T Dispositivo de Regeneración Si ro>g T entonces S==> “1” g ro(T) Pulso original que representa un “1” Instante de muestreo Pulso regenerado para un “1” Pulso original que representa un “0” El mismo pulso pero distorsionado por el canal Dispositivo de Regeneración Si ro<g entonces S==> “0” Pulso regenerado para un “0” COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F53orm. Señales g T Instante de muestreo ro(T)
  54. 54. Regeneración de onda PCM •Decodificación Implica generar un pulso PAM cuantizado a “L” niveles cuya amplitud es la suma lineal de todos los pulsos binarios en la palabra de código de “b” bits, siendo cada pulso binario ponderado por su lugar (20, 21, 22, ..., 2b-1) en el código. Recuerde que “b” es el número de bits por muestra. Filtrado: Es la operación final en el receptor consiste en recuperar la señal de mensaje al pasar la salida del decodificador por un filtro de reconstrucción pasabajas cuya frecuencia de corte es igual al ancho de banda “fm”de la señal mensaje. La señal recuperada, aún cuando no exista errores ni ruido en la transmisión, incluye la distorsión inicial (ruido) que introduce el proceso de cuantización. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F54orm. Señales
  55. 55. Regeneración de onda PCM CIRCUITO DECODIFICADOR PCM COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F55orm. Señales
  56. 56. CODEC PCM COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F56orm. Señales
  57. 57. Tasa de transmisión digital (Ancho de Banda) ESQUEMA DEL TRANSMISOR Tasa de muestras retenidas = fS Tasa de bits = b*fS=Rb Códigos Binarios b-bits Generador de Pulsos Codificador de línea Codificador de línea 1 1 0 0 A COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F57orm. Señales 1 0 Tb “1” lógico 0 Tb -A “0” lógico Salida de pulsos Digitales (polar) Entrada totalmente analógica Señal Cuantizada Señal muestreadora (fS): Tren de pulsos Tasa de muestras cuantizadas = fS Q L niveles S/H ...01100101... Ancho de banda de transmisión = ½ Rb
  58. 58. COM II - I. ZamoraU n i II - Conf 6: Cod. Fte. y F58orm. Señales

×