Pilot Cybercartographic Atlas of the Risk of Homelessness


Published on

The Pilot Atlas presents a number of ways to understand structural issues of homelessness in Canada by using dynamic graphical representations.

Tracey Lauriault
Project Research Leader,
Carleton University

Published in: Real Estate, Business, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • The Atlas is guided by the theory and application of cybercartography. Cybercartography sees location as central to knowledge integration in the emerging information society and part of the growing domain of maps on the Internet. Cybercartography: Theory and Practice (ed. and contributor). Volume 4 in Modern Cartography Series, Amsterdam: Elsevier, 2005, pp. 574.
  • The GCRC specializes in the creation of cybercartographic atlases. Its team includes cartographers, ontologists, audio visual experts, programmers, geomaticians, visualization specialists among many other experts. The GCRC is not a subject matter specialist on the topic of housing and homelessness. The GCRC applies its skills to enable specialist, researchers, public officials, policy makers, community groups, statisticians and scientists to translate, model and mobilize their knowledge into an atlas.
  • To increase understanding of the topic of the risks of homelessness, more specifically structural issues, by the general public and provide decisions makers with new ways of seeing the impact of policy interventions. Homelessness is a complex problem with considerable variation both across Canada and within individual urban areas. The Atlas presents the variability of a select number of indicators in ways in which people can better understand the issues.
  • The FCM QoLRS technical team collaboratively selected a variety of indicators associated with the risk of homelessness and track these across time: - households that spend more than 50% of their income on rent; - people living in substandard housing; - those on social housing waiting lists; - the poor - those who are living on low, insecure or feeble incomes, people on fixed incomes such as seniors or those receiving social assistance, - and some demographic groups such as lone parent families.
  • Cybercartographic atlases are “living atlases” and are designed in a modular fashion to facilitate the addition of new content. This modularity, combined with the transdisciplinary cybercartographic approach, enables participants to mobilize their knowledge from multiple perspectives and present these in an atlas format. Users do not require advanced technical skill and the cybercartographic approach is particularly well suited to the needs of policy makers, researchers, public and community based organizations. We have changed our programming toward a Java Script approach that will allow atlases to be accessible in multiple browsers (e.g. IE 8). Early software development was experimental. To view the current Atlas you require a HIGH SPEED INTERNET CONNECTION and a recent version of SAFARI, FIREFOX and/or Google's CHROME. It is based on the Nunaliit Framework. Due to the advanced, W3C (XHTML + SVG) standards compliant nature of the technology powering the atlas. IE did not meet those standard when we began developing in 2002.
  • Users arrives at the Atlas Introduction page. The text on the map links to thematic modules. The modules are also available in the text window on the right of the map. The text also provides a variety of administrative information related to the Atlas. Additional cities and themes could easily be added to this page as the Atlas grows. All the maps are interactive. A series of tabs at the bottom can be selected and these will change the map view. The scroll bar on the right moves up and down to enable the reading of the full text and the text within is hyperlinked to other related content. The map itself is also interactive as the cursor scrolls over municipal/neighbourhood/social housing data pop up in a window to provide more information. Also a region can be selected and will stay highlighted as the user navigates across topics in the tabs. This allows for the comparison across variables or time. The user can also zoom in and out to see the data at different scales. Other multimedia content can be added such as video, images, audio and these can also be accessed from the map.
  • The GraphoMap Module includes 3 FCM QoLRS risk of homelessness indicators, 11 data variables for 22 cities, at three time intervals. It was designed by Dr. Sebastien Caquard. It abstracts Canada’s geography into a 180º semi circle with QoLRS cities located relationally and distance wise from east to west. Circles proportionally represent the value of a particular variable in real numbers. For instance, the circles on the Vacancy Rate indicator represent the Total Number of Rented Dwellings for a particular QoLRS municipally and year. The Position of the Point on the Radial Line works as follows: the closer a point is to the centre of the semi circle, the higher the risk of homelessness for that particular variable. A video accompanies the GraphoMap to explain how it works just in case a user needs some pointers. Interactivity and a well-designed visualization can make accessible great complexity relatively easily when compared to data tables on multiple pages in a PDF report.
  • The location of the proportionally sized dots on the Lone Parent Families Spending variable represents the Percent of Lone-Parent Family Households spending 50% or more of Household Income Spent on Rent for a given year as a proportion of the total number of Lone-Parent Family Renters that same year. The higher the proportion of these Lone Parent Households being over extended the higher the risk of homelessness for that year.
  • This series of maps represents the spatial interpolation of the percentage of both the Low Income Cut Off (LICO) and the households spending more than 30% in rent (30% plus). This interpolation is based on data provided at the EA scale (1991) and DA scale (2001 and 2006). How to read this map: the darker areas represent the higher percentages, either in terms of LICO or 30% plus. For instance we can see an important increase of the percentage of households spending more than 30% in rent (30% plus) between 1996 and 2001. The City of Calgary Module tells the story of the economic risk of becoming homeless. The variables shown are Low Income (LICO) and also those who spend 30% + of their income on rent. The city wanted to see if these economic risk data could be rendered in such a way as to demonstrate variability within City of Calgary neighbourhoods. Often it is perceived that neighbourhoods show contiguous population groupings while the reality is that neighbourhoods depending on their historical evolution and where they are located vary.
  • This is a detailed zoomed in view with the same locale selected. This allows the user to navigate indicators and time for the same location.
  • The CMM Atlas Module tells the story of social housing and housing affordability for lower-income renting populations. The demand for and the supply side of social, affordable and different types of housing providers and programs are part of this module. Affordability remains an issue for many in the CMM while the supply does not meet the demand. This module shows the distribution of these data in both real numbers and proportionally for all 82 CMM municipalities. The CMM contributed these data to the project and crafted the text to accompany the interactive maps. Points display absolute values (numbers)‏ Colours display percentages for the same criteria.
  • The City of Toronto Atlas Module tells the story of its aging social housing stock. The City is faced with the daunting and expensive task of managing a large inventory of social housing that is aging, in need of repair and refurbishing to meet current energy efficiency and heating standards. It also has a large social housing waiting list, indicating that it cannot fully meet the current demand. The City contributed their Toronto Community Housing data. This dataset includes the location, name, number of rent geared to income (RGI) units and the year of construction for all city managed social housing. The data were aggregated by city neighbourhood and by decade. On this map the dark green circles represent the decade selected and the lighter green represent the construction of social housing prior to that. The story quickly becomes obvious as the construction boom for social housing appears in the 60s and 70s, which much stock built earlier, and drops in the 90s and tapers to only one new construction in 2003. We therefore get both an aging story and imagine the repair issues of a stock built according to old standards and generally very cheaply. The images also reveal some of the political changes in the priorities for social housing in the City of Toronto.
  • This was the first iteration which included the location of social housing by building and the decade of construction. This was considered to be useful but less informative than the former (what we have just seen) and also very slow to load on the Internet. Both versions are made available to users while the aggregated by neighbourhood (Green Dots) is the primary module.
  • The Canada Module was created to assess data variability of Census Subdivisions (CSDs) in Canada across time. CSDs are the Statistics Canada geographic units that represent the administrative boundaries of cities and municipalities. The points on the map represent the current 24 QoLRS cities. Researchers also wanted to develop a rate of change map series to show change in terms of units available for sale and for rent by CSD. MADGIC Data Liberation Initiative Census data were used to create these maps. We had another theme in mind but we were informed by Statistics Canada that one cross tabulation would cost upwards of $60 000. We dutifully declined and experimented. We believe the Rate of Change methodology we developed is useful, albeit difficult to understand by general users. Also CSD geographies have radically changed across time due to the wave of amalgamations across the country and with the advent of Nunavut. We have concluded that the results of this experiment are inaccurate. We would have liked to have been able to acquire data adjusted to 2001 boundaries. However, those are terribly expensive and are not part of the Data Liberation Initiative. Finally, because we are not housing experts, and we do not have experts positioned locally across the country, we could not explain the variations we were seeing in the maps. We kept this map to tell a cautionary tale for other researchers and to discuss data access in Canada. “One may need to mortgage the house to afford studying homelessness in Canada”.
  • HRSDC Proposal to build upon the pilot and create an atlas of homelessness in Canada. Includes FCM, Cities, Province of Ontario and HIFIS. Preparing a SSHRC CURA Letter of Intent proposing to work with academic & community based researchers and Homelessness Coalitions. The team includes researchers from geography, cartography, health, social policy, psychology and comparative criminology. It also represents many cities and regions in Canada. This aim is to mobilize existing research and render those into the Atlas, to build local mapping capacity and a community based geodata infrastructure.
  • Pilot Cybercartographic Atlas of the Risk of Homelessness

    1. 1. Pilot Cybercartographic Atlas of the Risk of Homelessness in Canada National Housing Research Committee Ottawa, Nov. 2, 2009 <ul><li>Presenters: Tracey P. Lauriault ( [email_address] ) ‏ Research Lead, D. R. Fraser Taylor, Primary Investigator </li></ul><ul><li>Cartographer: Dr. Sebastien Caquard, </li></ul><ul><li>Geomatician: Christine Homuth </li></ul><ul><li>Thanks to: Glenn Brauen, Amos Hayes and Jean-Pierre Fiset </li></ul>
    2. 2. Table of Contents <ul><li>Cybercartography </li></ul><ul><li>Funding, Partnerships and Collaboration </li></ul><ul><li>Why the Risk of Homelessness </li></ul><ul><li>Data Sources – knowledge Integration </li></ul><ul><li>About the Atlas </li></ul><ul><li>Atlas Welcome Page </li></ul><ul><li>Big Cities: QoLRS City Indicators Across Time </li></ul><ul><li>City of Calgary: LICO & 30% of Income Spent on Rent </li></ul><ul><li>City of Toronto: Ageing Social Housing Stock </li></ul><ul><li>Grand Montr éal: Grand Montréal: Logements sociaux et populations ayant des difficultés financières pour se loger </li></ul><ul><li>Canada: Renters VS Owners - What is wrong with this map? </li></ul><ul><li>Knowledge mobilization, multi-scale, MVOP and multi-scalar </li></ul><ul><li>Contact Information </li></ul>
    3. 3. What is cybercartography? <ul><li>&quot;the organization, presentation, analysis and communication of spatially referenced information on a wide variety of topics of interest and use to society in an interactive, dynamic, multimedia, multisensory and multidisciplinary format.&quot; </li></ul><ul><li>D.R. Fraser Taylor (2005, 2008) </li></ul>
    4. 4. Funding, Partnership and Collaborations <ul><li>Pilot Atlas of the Risk of Homelessness </li></ul><ul><li>Funded by: </li></ul><ul><ul><li>Data Development Projects on Homelessness Program, Homelessness Knowledge Development Program, Homelessness Partnering Secretariat of Human Resources and Social Development Canada (HRSDC) ‏ </li></ul></ul><ul><li>Partnership: </li></ul><ul><ul><li>Federation of Canadian Municipalities (FCM) Quality of Life Reporting System (QOLRS) (24 cities) ‏ </li></ul></ul><ul><li>2 cities and 1 metropolitan area: </li></ul><ul><ul><li>City of Calgary </li></ul></ul><ul><ul><li>City of Toronto </li></ul></ul><ul><ul><li>Communaut é m é tropolitaine de Montr é al </li></ul></ul>
    5. 5. Why an Atlas of the Risk of Homelessness? <ul><li>‑ Increase understanding of homelessness </li></ul><ul><li>‑ Create useful, tangible, engaging and accessible mapped data </li></ul><ul><li>‑ Visually & interactively represent structural issues </li></ul><ul><li>‑ Stimulate thinking about prevention </li></ul><ul><li>‑ Provide the general public and decisions makers with new ways of seeing the impact of policy interventions across time </li></ul><ul><li>‑ Atlases are boundary objects that facilitate the rendering of data and the telling of stories from multiple points of view (MPOV) </li></ul><ul><li>‑ Cybercartographic methodologies allow collaboration across sectors, disciplines, mandates as well as institutional and administrative territorial boundaries. </li></ul>
    6. 6. Data Sources – Knowledge Integration <ul><li>Federation of Canadian Municipalities ( FCM ) Quality of Life Reporting System (QOLRS) </li></ul><ul><ul><li>Canada Housing and Mortgage Corporation ( CMHC ) ‏ </li></ul></ul><ul><ul><li>Statistics Canada , Census and Special Cross Tabulations </li></ul></ul><ul><li>Maps, Data, and Government Information ( MADGIC ), Library, Carleton University </li></ul><ul><ul><li>Data Liberation Initiative (DLI) Statistics Canada Census </li></ul></ul><ul><ul><li>Statistics Canada Geography Division digital maps (EA, DA, CT, CD, CSD, Provinces, Canada Political, Cities) ‏ </li></ul></ul><ul><li>City of Toronto </li></ul><ul><ul><li>Social Policy Analysis and Research Section: Neighbourhood file </li></ul></ul><ul><ul><li>Toronto Housing Connections: Social Housing Registry </li></ul></ul><ul><ul><li>Toronto Community Housing Corporation: Social Housing Data </li></ul></ul><ul><li>City of Calgary </li></ul><ul><ul><li>Community and Neighbourhood, Social Policy and Planning Division: neighbourhood file </li></ul></ul><ul><li>Communauté Métropolitaine de Montréal (CMM), </li></ul><ul><ul><li>Direction des Politiques et interventions de développement: Special tabulation census data, CMM framework base map, Housing data </li></ul></ul>
    7. 7. About the Atlas <ul><li>Nunaliit Cybercartographic Atlas Framework </li></ul><ul><ul><li>&quot;settlement&quot;, &quot;community&quot;, or &quot;habitat&quot; in Inuktitut </li></ul></ul><ul><ul><li>The Nunaliit code is licensed under the New BSD License </li></ul></ul><ul><ul><li>http://nunaliit.org/index.html </li></ul></ul><ul><li>Modular </li></ul><ul><li>Designed to tell stories </li></ul><ul><li>Can be built upon </li></ul><ul><li>Other Atlases: </li></ul><ul><ul><li>A Cybercartographic Atlas of Canadian Cinema </li></ul></ul><ul><ul><li>Inuit Sea Ice Use and Occupancy Project </li></ul></ul><ul><ul><li>Living Cybercartographic Atlas of Indigenous Perspectives and Knowledge </li></ul></ul><ul><ul><li>Atlas of Arctic Bay </li></ul></ul><ul><ul><li>Kitikmeot Place Name Atlas </li></ul></ul><ul><ul><li>Cybercartographic Atlas of Canada's Trade with the World </li></ul></ul><ul><ul><li>Cybercartographic Atlas of Antarctica </li></ul></ul>
    8. 8. Introduction to the Pilot Atlas of the Risk of Homelessness
    9. 9. Big Cities: QoLRS City Indicators Across Time
    10. 10. GraphoMap: QoLRS City Indicators Across Time 50% + Income Spent on Rent
    11. 11. City of Calgary: LICO & 30% of Income Spent on Rent
    12. 12. City of Calgary: LICO & 30% of Income Spent on Rent
    13. 13. Grand Montréal: Grand Montréal: Logements sociaux et populations ayant des difficultés financières pour se loger
    14. 14. Aging Social Housing Stock by Neighbourhood: Toronto
    15. 15. Details by Neighbourhood: Toronto
    16. 16. Ageing Social Housing Stock by Building: Toronto
    17. 17. Details by Building: Toronto
    18. 18. Canada: Renters VS Owner s
    19. 19. Knowledge mobilization, multi-scale, Cross-Sector, MVOP <ul><li>FCM QoLRS Working Group (Planners, CIOs, Social Researchers, housing advocates). </li></ul><ul><li>Location, neighbourhoods, municipalities, metropolitan areas and Canada </li></ul><ul><li>NGO, academia, CMM and city officials </li></ul><ul><li>The story is about the Risk of Homelessness, </li></ul><ul><ul><li>QoLRS data frame the story, </li></ul></ul><ul><ul><li>local experts narrate their stories using those data (modules), </li></ul></ul><ul><ul><li>GCRC researchers render those into interactive maps and visualizations with local expert input (atlas) </li></ul></ul><ul><ul><li>that makes the issue accessible and tangible to users and decision makers. </li></ul></ul>
    20. 20. Next Steps & Contact Information <ul><li>HRSDC Proposal - FCM, Cities, Province of Ontario and HIFIS. </li></ul><ul><li>Preparing a SSHRC CURA LOI - </li></ul><ul><ul><li>academic & community based researchers and Homelessness Coalitions. </li></ul></ul><ul><ul><li>The team includes researchers from geography, cartography, health, social policy, psychology and comparative criminology. </li></ul></ul><ul><ul><li>This aim is to mobilize existing research and render those into the Atlas, to build local mapping capacity and a community based geodata infrastructure. </li></ul></ul><ul><li>Atlas URL: http:// gcrc.carleton.ca /homelessness </li></ul><ul><li>Contact: Tracey P. Lauriault, tlauriau@gmail.com </li></ul>