Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Design of an Integrated CSP-Calcium Looping for Uninterrupted Power Production Through Energy storage.

Authors: Evgenios Karasavvas, Kyriakos D. Panopoulos, Simira Papadopoulou, Spyros Voutetakis. Presentation PRES 2018 - 21st conference on Process Integration for Energy Saving and Pollution Reduction

  • Login to see the comments

  • Be the first to like this

Design of an Integrated CSP-Calcium Looping for Uninterrupted Power Production Through Energy storage.

  1. 1. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Design of an Integrated CSP-Calcium Looping for Uninterrupted Power Production Through Energy Storage 21st Conference on Process Integration for Energy Saving and Pollution Reduction - PRES 2018, 25-29 August 2018, Prague, Czech Republic Evgenios Karasavvas, Kyriakos Panopoulos, Simira Papadopoulou, Spyros Voutetakis Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology – Hellas (CERTH), 57001 Thermi-Thessaloniki, Greece
  2. 2. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage 100 MW Work Power System Power System Time horizon=12 hrs Concentrating Solar Power (CSP) plant – Thermochemical Energy Storage (TCES) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC Exothermic Endothermic CaO (s) + CO2 (g) → CaCO3 (s)CaCO3 (s) → CaO (s) + CO2 (g)
  3. 3. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage SOCRATCES Project – Description PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Ca-Looping (CaL)-Concentrating Solar Power (CSP) plant • Most promising technology for thermochemical energy storage (TCES) Solar driven calcination reaction Highly exothermic carbonation reaction T~650-1000 oC Reactants/ Products stored at ambient temperatures High energy density of CaO/CaCO3 ~3226 MJ/m3 Low price (<10 €/tn), Abundant, Harmlessness of natural CaCO3 Pilot-scale plant erection (10 kWth) Molten salts CaCO3 (s) ↔ CaO (s) + CO2 (g)
  4. 4. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage System Integration: Carbonation/Calcination PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC Presentation Outline • The scope of the study • Process description of a conceptual CSP-CaL integration scheme • Calcination Process Flow Diagram for Thermochemical Energy Storage (TCES) and Power Production • Carbonation Process Flow Diagram for Power Production • Calciner - Carbonator Integration Scheme • Calcination section simulations results • Carbonation section simulations results • Conclusions
  5. 5. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC Conceptual CSP-CaL integration scheme ▪ Use of solar energy to heat CO2 (>1000 oC) / accomplish calcination / preheat solids ▪ Surplus CO2 to exploit excess thermal energy → power production through Rankine cycle during daylight / Brayton or Rankine cycle during the night Heat Exchanger Network Calciner Carbonator CaO Storage Water Rankine Cycle Heat Exchanger Network CO2 Storage CaCO3/ CaO Storage Compression Expansion Brayton or Rankine Cycle Q CaO (s) CO2 (g) CO2 (g) CO2 (g) CaO (s) CaCO3 (s) CO2 (g) CO2 (g) CaCO3 (s) CO2 CaO CaCO3 CaCO3 (S)→CaO (s) + CO2 (g) ΔΗrxn = +178 kJ/mol CaO (s) + CO2 (g)→CaCO3 (s) ΔΗrxn = -178 kJ/mol Calciner side| Energy input| Energy production 12 hours the day Carbonator side| Energy production 12 hours the night CaO (s), T=200-700 o C Tcarb=875 o C Pcarb=1-7 bar Tcalc=950 o C Pcalc=1 bar
  6. 6. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Calcination: Thermochemical Energy Storage (TCES) & Power Production in the day PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC CaCO3 Storage CO2 Storage Turbine Rankine Compressor S-03 S-04 S-06 S-01 S-07 S-20 S-21 S-22 S-19 S-02 S-05 Compressor 1 S-14S-13S-12S-10S-09 S-08 Compressor 2 Compressor 3 S-15 S-16 S-17 S-18 S-11 Cooler2 IntCool1 IntCool2 IntCool3 HXA Evaporator Solar HX Calciner Pump Condenser Cooler1 CaCO3/ CaO CO2 H20 Insulated CaO Storage TCO2=? [1000,1050,1100] oC • A design based on a volumetric gas (CO2) solar receiver • CO2 heated up above 1000 oC to preheat solids / accomplish calcination • Large amounts of hot CO2 recirculates → Exploitation (Rankine) → Power production • CO2 through a three stage compression and intercoolings to store. (75 bar / Ambient Temp.) • Storage of produced solids (CaO/CaCO3) at an insulated storage vessel • Parametric analysis of CO2 receiver temperature
  7. 7. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Carbonation: Power Production in the night PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Stored solids (CaO/CaCO3) are conveyed to carbonator • Compressed CO2 after expansion, is pumped through a HX network to carbonator • Two CO2 alternative routes after carbonator, depending on the carbonation pressure • Use of ORC to exploit low enthalpy stream (S-08, ~200 oC) • Parametric analysis of Carbonation pressure and CaO storage temperature Turbine Compressor CaCO3 /CaO Storage S-01 S-16 S-03 S-05a S-06 S-07 S-08 S-10 S-11 S-12 S-13 S-14 S-17 Turbine Rankine S-24 S-21 S-22 S-23 S-04b S-02 CO2 Storage Insulated CaO Storage Condenser Pump Evaporator Turbine Brayton S-04a S-05b S-15 S-19 S-09 ORC HXD HXE HXG HXI Carbonator HXF CO2 CaO/CaCO3 H20 S-18 S-20 CO2 alternative routes TCaCO3=? [200,500,690] oC Pcarb=? [1,3,5,7] bar
  8. 8. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Modelling methodology and model assumptions PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC Calcination Assumptions Values Carbonator Assumptions Values Net solar flux in solar HX (Qinput) (MWth) 100 - - Thermal losses in calciner (%) Calciner Temperature (oC) Calciner pressure (bar) Ambient Temperature (oC) CaCO3 conversion (%) max Rankine temperature (oC) max Rankine Pressure (bar) min temperature approach for GG, GS, GL HX (oC) Intercoolings in CO2 storage compression Intercoolings in CO2 cycle compression CO2 storage conditions (bar, ambient) Daylight hours (h) Isentropic efficiencies (compression/expansion) Organic Rankine Cycle (ORC) efficiency (%) 5 950 1 25 97 600 75 50, 25, 25 3 1 75 12 0.89 - Thermal losses in carbonator (%) Carbonator temperature (oC) Carbonator pressure (bar) Ambient temperature (oC) CaO conversion (%) Brayton outlet pressure (bar) - - - Night hours (h) 0 875 1,3,5,7 25 50 1 bar - 50, 25, 25 - 1 - 12 0.89 15 , ,12 12 100 12 net day net night global W hr W hr hr   +  =  Global plant efficiency , 1 2 3 , 100 turb rank comp comp comp comp pump net day W W W W W W W − − − − − = , ,mainnet night turb turb ORC compressorW W W W W= + + −
  9. 9. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Turbine Compressor CaCO3 /CaO Storage S-01 S-16 S-03 S-05a S-06 S-07 S-08 S-10 S-11 S-12 S-13 S-14 S-17 Turbine Rankine S-24 S-21 S-22 S-23 S-04b S-02 CO2 Storage Insulated CaO Storage Condenser Pump Evaporator Turbine Brayton S-04a S-05b S-15 S-19 S-09 ORC HXD HXE HXG HXI Carbonator HXF S-18 S-20 Calciner – Carbonator Integration Scheme PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC CaCO3 Storage CO2 Storage Turbine Rankine Compressor S-03 S-04 S-06 S-01 S-07 S-20 S-21 S-22 S-19 S-02 S-05 Compressor 1 S-14S-13S-12S-10S-09 S-08 Compressor 2 Compressor 3 S-15 S-16 S-17 S-18 S-11 Cooler2 IntCool1 IntCool2 IntCool3 HXA Evaporator Solar HX Calciner Pump Condenser Cooler1 CaCO3/ CaO CO2 H20 Insulated CaO Storage
  10. 10. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Calcination section scenarios results (1) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Maximum solids throughput of 9.3 kg/s ~ 558 kg/min • Significant decrease of CO2/Solids mass rate with CO2 temperature (78/1 → 8.5/1) • Calcination Net Work of a range of 25-30 MW • Decrease of CO2 recycle with CO2 temperature (91 → 81 kg/s) • Decrease of Rankine H20 flowrate with temperature (26 → 22 kg/s) 30.77 27.9 25 90.95 85.87 81.30 25.74 23.68 21.66 0.75 3.18 6.04 1.16 4.91 9.32 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 1000 1050 1100 Work(MW),MassFlow(Kg/s) Temperature (o C) Wnet (MW) FCO2,recycle (Kg/s) FH20 (Kg/s) CaCO3 (kg/s) CaCO3/CaO (kg/s) CO2/Solids =78/1 CO2/Solids =17/1 CO2/Solids =8.5/1 Parametric analysis of CO2 solar receiver temperature FCO2,recycle (kg/s) FH2O (kg/s) CaCO3 (kg/s) CaCO3 / CaO (kg/s)
  11. 11. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Calcination section scenarios results (2) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Dramatic increase of calcination contribution (1 → 10 MW) and solids preheating (1 → 9 MW) with CO2 inlet temperature • Considerable decrease of Rankine input energy (90 → 76 MW) with CO2 inlet temperature 90.2 83 75.89 1.26 5.43 10.42 1.12 4.57 9 7.42 7 4.69 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Tcalc_1000 Tcalc_1050 Tcalc_1100 %Distribution CO2 inlet temperature oC Distribution of input energy in different sections Rankine exchanger (MW) Calcination (MW) Solids preheat (MW) Other (MW)
  12. 12. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Calcination section scenarios results (3) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC Parametric analysis of CO2 solar receiver temperature • Great difference in the energy produced vs. the energy consumed 30.77 27.9 25 33.31 30.64 28.02 2.22 2.12 2.04 0.03 0.12 0.240.04 0.15 0.290.03 0.15 0.270.22 0.2 0.19 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 1000 1050 1100 DistributionofIndividualWork(MW) Temperature (o C) Wnet (MW) Wturb,Rank (MW) Compressor (MW) Compressor 1 (MW) Compressor 2 (MW) Compressor 3 (MW) Pump (MW)
  13. 13. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Carbonation operation scenarios results (1) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Carbonation net work of a range of 0.45-5.75 MW • Increase of net work with CaO storage temperature, CO2 receiver temperature and carbonator pressure 4.27 4.47 4.56 4.98 5.15 5.22 3.64 5.48 5.68 5.75 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Pcarb=1 bar Pcarb=3.2 bar Pcarb=5 bar Pcarb=7 bar Network(MW) Carbonation pressure (bar) Carbonation net work from Calcination with Treceiver=1100 oC TCaO_200 oC TCaO_500 oC TCaO_690 oC Linear (TCaO_690 oC)oC oC oC oC)
  14. 14. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Carbonation operation scenarios results (2) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC 29.3 29.5 29.630.0 30.2 30.228.6 30.5 30.7 30.8 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 Pcarb=1 bar Pcarb=3.2 bar Pcarb=5 bar Pcarb=7 bar Globalefficiency(%) carbonation pressure (oC) Global efficiency of process from calcination with Treceiver=1100 oC TCaO_200 oC TCaO_500 oC TCaO_690 oC oC oC oC • Slight increase of the global efficiency with the carbonation pressure and CaO storage temperature • For fixed CO2 solar receiver temperature → range of efficiency: 28.6-30.8%
  15. 15. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Carbonation operation scenarios results (3) PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Generally, contribution of carbonation on the global efficiency increases significantly with calcination temperature (1.45-18.70 %) Carbonation contribution on the total produced work for three CO2 receiver temperatures 2.25 97.75 TCO2, Reveiver=1,000 oC 9.69 90.31 TCO2, Receiver=1,050 oC 18.50 81.50 TCO2, Receiver=1,100 oC Pcarb = 5 bar TCaO = 690 oC
  16. 16. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage Conclusions PRES 2018 25-29 August 2018 PRAGUE, CZECH REPUBLIC • Assuming a 100 MW solar input flux → Power can be produced both in day (calcination) and night (carbonation) • Power generation in carbonation examined only by using two alternatives ways (CO2 Brayton cycle or/and Rankine cycle) • Total heat uptake in the calciner is achieved solely if CO2 is used as the heat transfer fluid • The majority of the power is produced due to the surplus hot CO2 at calcination section • Global efficiency is slightly favored by high carbonation pressure and high CaO storage temperature and slightly reduced with CO2 receiver temperature • CO2 receiver temperature has a great impact on global performance: ➢ If CO2 temperature increases (1000 →1100 οC) CO2/solids (mass) → DECREASE (78/1 → 8.5/1) Global efficiency (%) → DECREASE (31.5 → 30.7) Carbonation contribution (%) → INCREASE (1.45 → 18.70)
  17. 17. SOlar Calcium looping integRAtion for Thermo-Chemical Energy Storage This Project has received funding from European Commission by means of Horizon 2020, the EU Framework Programme for Research & Innovation, under Grant Agreement no.727348. Thanks for your attention! Any Questions? Contact details: Evgenios Karasavvas: ekarasav@cperi.certh.gr Kyriakos Panopoulos: panopoulos@certh.gr Useful links : https://socratces.eu/ https://www.certh.gr/root.en.aspx

×