Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Chan, Pak

833 views

Published on

Published in: Business, Technology
  • Be the first to comment

Chan, Pak

  1. 1. Pak H. Chan, PhD James R. Doty Professor of Neurosurgery and Neurosciences Stanford University Medical School National Neurotrauma Symposium July 12, 2011 Fort Lauderdale, Florida Oxidative Stress, Mitochondrial Dysfunction and Neuronal Apoptosis in Acute Brain Injuries
  2. 2. Neuronal Death Signaling Pathways in Acute Brain Injuries <ul><li>Intrinsic/Mitochondrial-Dependent </li></ul><ul><ul><li>Bcl-2 Family – Bax/Bid/Bcl-x S /Bad – BH3 </li></ul></ul><ul><ul><li>Apoptosis – Cytochrome c/Apaf-1/Caspase-9/Caspase-3 </li></ul></ul><ul><ul><li>AIF/Endo G </li></ul></ul><ul><li>Extrinsic/Mitochondrial-Independent </li></ul><ul><ul><li>TNF/TNFR/TRADD/Caspase-2/Caspase-8 </li></ul></ul><ul><ul><li>FAS/FAS-L/Caspase-8 </li></ul></ul><ul><ul><li>MAPK/SAPK/JNK </li></ul></ul><ul><ul><li>NF-  B ? </li></ul></ul><ul><li>Transcriptional-Dependent (Genomic) and -Independent (Mitochondrial) </li></ul><ul><ul><li>p53/PIDDosome/PUMA </li></ul></ul>
  3. 3. Procaspase-9 Caspase - Cytochrome C Smac IAPs Smac mitochondria AIF Activation of CAD Intrinsic Mitochondria-Dependent Pathway of Apoptosis DNA Damage Activation of Downstream (2,6,8,10) PARP Cleavage cytosol AIF Cell Death Trigger (ischemia & trauma) Caspase-9 Caspase-3 (-) Smac ROS mitochondria DNA Damage Cell Death Activation of Downstream Caspases (2,6,8,10) PARP Cleavage nucleus Cytochrome c (-)
  4. 4. Oxidants as triggers for mitochondrial-dependent apoptosis in brain trauma and ischemia
  5. 5. Clip compression (5sec, 15g) Lumbar enlargement Spinal Cord Injury in Rats (SOD1 Tg rats) Motor neuron counting at 0, ±1, 2, 3 mm from the center Sugawara et al, FASEBJ , 2002
  6. 6. Double Fluorescence Staining of Ethidium and NeuN, GFAP, MitoTracker in Wt rats 1 day after SCI NeuN GFAP MT Sugawara et al, FASEBJ , 2002
  7. 7. Superoxide Radicals in Spinal Cord Sugawara et al, FASEBJ , 2002
  8. 8. Neuronal Histology (a,c,d,e) and NeuN (b,g) TUNEL (f) staining, and DNA laddering (h) in SCI 3d 1d 3d 3d Sugawara et al, FASEBJ , 2002
  9. 9. Western Blots of Cytochrome C and Cleaved Caspase 9 in SCI Sugawara et al, FASEBJ , 2002
  10. 10. Apoptotic Stimulus Procaspase-9 Caspase-9 Caspase-3 DNA Damage Cell Death Cytochrome C Cytochrome c Smac IAPs (-) (-) Smac Superoxide Overproduction Activation of Downstream Caspases (2,6,8,10) PARP Cleavage C:DNA Damage, Cell Death (3d) B:Cytochrome c Release, Caspase-9 Cleavage (6h-1d) A: Superoxide Production (6h) A B B mitochondria cytosol ? C Spinal Cord Injury Necrotic Cell Death (6h-1d) Within 0.3mm 0.3mm-2.5mm from the lesion In the present study
  11. 11. Mitochondrion, a life and death executor Wallace, Science 1999
  12. 12. Cytochrome C Release in Wt and SOD2 -/+ Mice After TBI (Controlled Cortical Impact, Dixon 1991) Lew é n et al, JCBFM, 2001
  13. 13. Superoxide radical and infarction volume in SOD2 -/+ mice after cerebral ischemia and reperfusion Kim et al, Stroke , 2002
  14. 14. SOD2-KO mice are more susceptible to hemorrhage SOD2-KO WT Hemoglobin  -Actin 72h Rate of HT SOD2-KO: 8/9 WT: 3/8 Maier et al., Ann Neurol 2006; 59:929-938
  15. 15. Neuroprotective strategy: Targeting Mn-SOD activity and signaling <ul><li>Unlike cytosolic SOD1 and extracellular SOD3, mitochondrial SOD2 (MnSOD) is highly inducible by cytokines (IL-1, TNF  , etc. Wong & Goeddel, Science 1998) </li></ul>
  16. 16. Putative binding motifs of STAT3 in promoter of mouse Mn-SOD gene A Mouse SOD2 promoter -1880 tgaagaccgc tttgacatca gccatggaga cgcagagttt ggagtttacc cagctggttt cctgtctttc tttggggatt acagttaagt gattggatgg atctcagaag agaccttgaa -1760 ctttggattt ttaatattgt tgagactgct atagactatg aggacttgaa aag tttgact aaa tgcattt ttttttgttt ttgtttttgt ttttttttga ggcagggttt ctctgtatag -1640 ccctggctgt c ttccggaaa tcactttgta gaccaggcta gccttgaact cagaaatccg cctgcctctg tctccggagt gctgggatca aaggcatgtg ccaccacacc accatagcat -1420 tttgcattat gctatgttta agtatggccc cccatagact catgtttttg aacaagtcta tggggggcca gggagtggag catgatggtt tgtatattct tgggccaggg agtggcacca -1300 tctggaggtg tggcc ttgtt ggaa taggtg tgacctggtt ggaatgggtg tgtcactgtg ggtgtgggca taagatcctc accctagttg cctggaagtc agtcttccac tagccgcctt -1180 tggatgagga catagaactc tcagctctgc ctgtgccatg cctgcctgga tactgccatg ctcccacctt aatgataatg gactgaacct ctgaacctgt aagccagcca caagtaactg -1060 ttgtttttta taagacttgc cttggtcatg gtgtctgttc acagcagtaa aaccctaact aagacacagg tcatccatac agctccggtc tgacgcctgt ggacaggttt ctccctaccg -940 gaaagcatcc tcttgacaat tcccc ttacc ctaa gccctg tcatccttag gaggcctgca aagggggtgg gaaaaaacca cc gggaacta ct cagccaac tgccttctgc t ttcttagtg -820 ttttctaatc agggaagaca taaaccca tt aagtaga aga ggaaagctgt ataattg tta t g gaaa catt tgatagccac tgc ttcttag ac taataagt ccacaaaggg aaacaatgtc -700 cttttacat t tggtcgag tg ggttggtttt tgaagtcact gaatg ttgca gagt ttaatc aag aaagatg aacctcgcct tctaatccgg actcttacta g ttaactggc aagctgcacc -580 cggagtccgc aaccccagtc tcaggggcaa caaagatgaa cacacgcaaa cctgcgacgt gatttaatgt caggttaggc cccagggaag gtcactccgg gcataaatta actgggtcag -460 aggggccctg attactccat aa ttctgacc a gcagcagag ccttggct tt ccggagg aaa gtctccaggg t ttcccagaa gcaggagtag aaatagagtg gaagctttgc agctcacagc -340 cagagctgga ca gggcggc c cg aggagggg cggacc gaca ccgcggggac c ggggttccc c gag gcgggc ggggc caagg ccgatggtg g gggcgtggc t gtagcaagca cgcggcctct -220 accaatttgg cacaggggag acgttgcc tt cccagga tgc cgctccgtta tgcgccgggc cgtccgtgtc gccgtcctcc cctccgctga tgggcgctgc gggcagggtc accgcttcgc -100 tgtgtccttg cggacgcc gg gcgg acgctg cctagcagac gcgcgcctgc gagcgaacgg ccgtg ttctg agga gagcag cggtcgtgta aacctcaata atg ttgtgtc gggcggcgtg NF-kB NF-kB SP-1 SP-1 SP-1 SP-1 SP-1 Start codon I II III IV V VI STAT3 STAT3 STAT3 STAT3 3.STAT3 7.STAT3 11.STAT3 STAT3 STAT3 1.STAT3 4.STAT3 5.STAT3 6.STAT3 8.STAT3 9.STAT3 10.STAT3 12.STAT3 2.STAT3 +1 STAT3: S ignal T ransducers and A ctivator of T ranscription 3 SPI: Promoter-selective transcription factor 1 NF  B: Nuclear Factor Kappa B Jung et al, J Neurosci , 2009
  17. 17. STAT3 is significantly down-regulated by ischemic reperfusion in mouse MCAO model Jung et al, J Neurosci , 2009
  18. 18. Cerebral ischemia/reperfusion STAT3 Hypothesis: Induction of Mn-SOD (SOD2) expression by STAT3 is neuroprotective after cerebral ischemia and reperfusion p-STAT3 (Y705) Nuclear translocation Mn-SOD promoter-DNA binding Mn-SOD expression Mitochondrial oxidative stress Neuronal survival/death
  19. 19. STAT3 regulates the transcription of the mouse Mn-SOD gene Jung et al, J Neurosci , 2009
  20. 20. Cytokine (IL-6) JAK2 activation Binding of cytokine receptor by IL-6 and the activation of STAT3 is neuroprotective STAT3 phosphorylation (Y705) Mn-SOD induction and expression Neuronal survival Jung et al, unpublished data
  21. 21. IL-6 increase p-STAT3 and MnSOD expression in the ischemic brain and in cortical neurons after OGD Jung et al, unpublished data
  22. 22. IL-6R knockdown induces cell death and ischemic infarction Jung et al, unpublished data
  23. 23. IL-6 preconditioning up-regulated Mn-SOD via STAT3 activation and induced cytoprotection for neural stem cells in vitro H Sakata et al, unpublished data
  24. 24. IL-6 preconditioning reduced grafted cell death in vivo H Sakata et al, unpublished data
  25. 25. Summary Can we block mitochondrial activation of apoptosis? 1) Enhanced mitochondrial anti-oxidative properties and functions, upregulation of the inducible mitochondrial anti-oxidant enzyme, MnSOD (SOD2) 2) Activation of the anti-apoptotic signaling pathway:   IL-6  IL-6R/gp130  JAK2/STAT3  p-STAT3 (Y705)  MnSOD Promoter  MnSOD Expression  Anti-Mitochondrial Oxidative Stress  Neuronal Survival 3) Targeting IL-6/STAT3/MnSOD signaling in neural stem cells for neuroprotection in acute brain injuries?
  26. 26. Acknowledgements <ul><li>National Institutes of Health </li></ul><ul><li>PO1 NS014543-32 </li></ul><ul><li>RO1 NS025392-22A1 </li></ul><ul><li>RO1 NS038653 </li></ul><ul><li>James R. Doty Endowment </li></ul>Joo Eun Jung, PhD Hiroyuki Sakata, MD Gab Seok Kim, PhD Purnima Narasimhan, PhD Carolina Maier Albers, PhD Takuma Wakai, MD, PhD Kuniyasu Niizuma, MD Hideyuki Yoshioka, MD, PhD Hai Chen, MD, PhD Nobuya Okami, MD Anders Lewen, MD, PhD (Sweden) Taku Sugawara, MD, PhD (Japan) Fengshan Yu, MD (NIMH, USA)

×