Sisinformaciom

988 views

Published on

sistemas

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
988
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Sisinformaciom

  1. 1. PARTE I:INTRODUCCIÓNNELSON RODRIGUEZ PALACIOS
  2. 2. Temario1. Introducción 1.1. Finalidades y Evolución de los Sistemas de Información. 1.2. Herramientas para la Toma de Decisiones: diferencias e interrelación. 1.3. Almacenes de Datos, OLAP y Minería de Datos: definición e interrelación.2. Almacenes de Datos 2.1. Introducción a los Almacenes de Datos. 2.2. Arquitectura de un Sistema de Almacén de Datos. 2.3. Explotación de un Almacén de Datos: Herramientas OLAP. 2.4. Sistemas ROLAP y MOLAP. 2.5. Carga y Mantenimiento de un Almacén de Datos. 2.6. Diseño de un Almacén de Datos. 2.7. Líneas de Investigación Abiertas.3. Minería de Datos 3.1. Introducción a la Minería de Datos (DM) 3.2. El proceso de KDD 3.3. Técnicas de Minería de Datos 3.4. Web Mining 3.5. Líneas de Investigación Abiertas 2
  3. 3. Según la función a la que vayan destinados o el tipo de usuario final del mismo, los SI pueden clasificarse en:•Sistema de procesamiento de transacciones (TPS).- Gestiona la informaciónreferente a las transacciones producidas en una empresa u organización.•Sistemas de información gerencial (MIS).- Orientados a solucionar problemasempresariales en general.•Sistemas de soporte a decisiones (DSS).- Herramienta para realizar el análisis delas diferentes variables de negocio con la finalidad de apoyar el proceso de toma dedecisiones. Ej: Sistemas Expertos•Sistemas de información ejecutiva (EIS).- Herramienta orientada a usuarios denivel gerencial, que permite monitorizar el estado de las variables de un área o unidadde la empresa a partir de información interna y externa a la misma.•Sistemas de automatización de oficinas (OAS).- Aplicaciones destinadas a ayudaral trabajo diario del administrativo de una empresa u organización.Estos sistemas de información no surgieron simultáneamente en el mercado; losprimeros en aparecer fueron los TPS, en la década de los 60, y los últimos fueron losSE, que alcanzaron su auge en los 90.
  4. 4. Objetivos Parte I• Distinguir los sistemas de información para la gestión y los sistemas de información para la toma de decisiones.• Conocer la evolución de las herramientas para el análisis de sistemas de información para la toma de decisiones.• Distinguir las propiedades y finalidades de las diferentes herramientas DSS (soporte a la toma de decisiones): EIS, OLAP, consultas & informes, minería de datos. 4
  5. 5. Finalidad de los Sistemas de Información La información reduce nuestra incertidumbre (sobre algún aspecto de la realidad) y, por tanto, nos permite tomar mejores decisiones 5
  6. 6. Finalidad de los Sistemas de Información• Inicialmente la finalidad de los sistemas de información era recopilar información sobre un parcela del mundo para ayudar en la toma de decisiones: • recuentos de cereales en Babilonia, de cacao por los pipiles, • censos civiles y militares romanos o chinos, • libros contables de árabes o sefardíes, • ...• Actualmente, con la informatización de las organizaciones y la aparición de aplicaciones software operacionales sobre el sistema de información, la finalidad principal de los sistemas de información es dar soporte a los procesos básicos de la organización (ventas, producción, personal...). 6
  7. 7. Interés Renovado por la Finalidad “Prístina” Una vez satisfecha la necesidad de tener un soporte informático para los procesos básicos de la organización (sistemas de información para la gestión). Las organizaciones exigen nuevas prestaciones de los sistemas de información (sistemas de información para la toma de decisiones). 7
  8. 8. Evolución• 60’s: Informes batch: • la información es difícil de encontrar y analizar, poco flexible, se necesita reprogramar cada petición.• 70’s: Primeros DSS (Decision Support Systems) y EIS (Executive Information Systems): • basados en terminal, no integrados con el resto de herramientas.• 80’s: Acceso a datos y herramientas de análisis integradas (conocidas como intelligent business tools): • Herramientas de consultas e informes, hojas de cálculo, interfaces gráficos e integrados, fáciles de usar. • Acceden a las bases de datos operacionales (“killer queries”).• 90’s: Almacenes de Datos y herramientas OLAP.• 00’s: Herramientas de Minería de Datos y Simulación. 8
  9. 9. Herramientas para la Toma de Decisiones Han aparecido diferentes herramientas de negocio o DSS quecoexisten: EIS, OLAP, consultas & informes, minería de datos, ... • ¿Cuál es la diferencia entre EIS y OLAP? • ¿Cuál es la diferencia entre “informes avanzados” y OLAP? • ¿Cuál es la diferencia entre OLAP y Minería de Datos? • ¿Qué interrelaciones existen entre todas estas herramientas? 9
  10. 10. Herramientas para la Toma de Decisiones ¿Cuál es la diferencia entre EIS y OLAP?• Un EIS (Executive Information System) es un sistema de información y un conjunto de herramientas asociadas: • Proporciona a los directivos acceso a la información de estado y sus actividades de gestión. • Está especializado en analizar el estado diario de la organización (mediante indicadores clave) para informar rápidamente sobre cambios a los directivos. • La información solicitada suele ser, en gran medida, numérica (ventas semanales, nivel de stocks, balances parciales, etc.) y representada de forma gráfica al estilo de las hojas de cálculo.• Las herramientas OLAP (On-Line Analyitical Processing) son más genéricas: • Funcionan sobre un sistema de información (transaccional o almacén de datos) • Permiten realizar agregaciones y combinaciones de los datos de maneras mucho más complejas y ambiciosas, con objetivos de análisis más estratégicos. 10
  11. 11. Herramientas para la Toma de Decisiones ¿Cuál es la diferencia entre “informes avanzados” y OLAP? • Los sistemas de informes o consultas avanzadas: • están basados, generalmente, en sistemas relacionales u objeto- relacionales, • utilizan los operadores clásicos: concatenación, proyección, selección, agrupamiento, … (en SQL y extensiones). • el resultado se presenta de una manera tabular. • Las herramientas OLAP • Están basadas, generalmente, en sistemas o interfaces multidimensionales, • Utilizando operadores específicos (además de los clásicos): drill, roll, pivot, slice & dice, … 11 • El resultado se presenta de una manera matricial o híbrida.
  12. 12. Herramientas para la Toma de Decisiones ¿Cuál es la diferencia entre OLAP y minería de datos? • Las herramientas OLAP • proporcionan facilidades para “manejar” y “transformar” los datos. • producen otros “datos” (más agregados, combinados). • ayudan a analizar los datos porque producen diferentes vistas de los mismos. • Las herramientas de Minería de Datos: • son muy variadas: permiten “extraer” patrones, modelos, descubrir relaciones, regularidades, tendencias, etc. • producen “reglas” o “patrones” (“conocimiento”). 12
  13. 13. Herramientas para la Toma de Decisiones¿Qué interrelaciones existen entre todas estas herramientas? Fuentes Herramientas Internas de consultas e informes Base de Datos Transaccional Herramientas EIS Almacén Interfaz y ETL Operadores de Datos Fuente de Datos 1 Herramientas texto OLAP Fuente de Datos 3 HTML Herramientas de Fuente de Datos Fuentes Minería de Externas Datos • La aparición de algunas de ellas han hecho cambiar la manera de trabajar de otras herramientas. 13
  14. 14. Almacenes de DatosEl almacén de datos es ahora el “sistema de informacióncentral” en todo estre proceso.Un almacén de datos es una colección de datos: • orientada a un dominio • integrada • no volátil • variante en el tiempopara ayudar en la toma de decisiones [Immon 1992, 1996] 14
  15. 15. Almacenes de DatosActualmente, Los almacenes de datos y las técnicas OLAP son las maneras más efectivas y tecnológicamente más avanzadas para integrar, transformar y combinar los datos para facilitar al usuario o a otros sistemas el análisis de la información. • La tecnología OLAP generalmente se asocia a los almacenes de datos, aunque: • Podemos tener Almacenes de Datos sin OLAP y viceversa. 15
  16. 16. Minería de DatosLa Minería de Datos es un conjunto de técnicas deanálisis de datos que permiten: • Extraer patrones, tendencias y regularidades para describir y comprender mejor los datos. • Extraer patrones y tendencias para predecir comportamientos futuros.Debido al gran volumen de datos este análisis ya nopuede ser manual (ni incluso facilitado por herramientasde almacenes de datos y OLAP) sino que ha de ser(semi-)automático. 16
  17. 17. Minería de DatosLa Minería de Datos se diferencia claramente del restode herramientas en el sentido de que: • no transforma y facilita el acceso a la información para que el usuario la analice más fácilmente. la minería de datos “analiza” los datos 17
  18. 18. Minería de Datos• La minería de datos es sólo una etapa del proceso de extracción de conocimiento a partir de datos.• Este proceso consta de varias fases: • Preparación de Datos (selección, limpieza, y transformación), Minería de Datos, Evaluación, Difusión y Uso de Modelos.• incorpora muy diferentes técnicas • árboles de decisión, regresión lineal, redes neuronales artificiales, técnicas bayesianas, máquinas de soporte vectorial, etc.• de campos diversos: • aprendizaje automático e I.A., estadística, bases de datos, …• aborda una tipología variada de problemas: • clasificación, categorización, estimación/regresión, agrupamiento, ... 18
  19. 19. Almacenes de Datos y Minería de Datos ¿Es necesario tener almacenes de datos para realizar minería de datos?• Los almacenes de datos no son imprescindibles para hacer extracción de conocimiento a partir de datos. • se puede hacer minería de datos sobre un simple fichero de datos.• Las ventajas de organizar un almacén de datos para realizar minería de datos se amortizan sobradamente a medio y largo plazo cuando: • tenemos grandes volúmenes de datos, o • éstos aumentan con el tiempo, o • provienen de fuentes heterogéneas o • se van a combinar de maneras arbitrarias y no predefinidas. 19
  20. 20. Un concesionario de automóviles desea sistematizar su gestión de ventas de vehículos. En particular serequiere tener almacenado la información referente a los clientes, los vehículos vendidos, así como de losvendedores para ello se tiene en cuenta:• El concesionario dispone de un catalogo de vehículos definidos por marca, modelo, cilindrare y precio.• cada uno de los modelos tiene accesorios adicionales como (aire acondicionado, rines de lujo, alarmaetc.).los accesorios están definidas por un código, nombre, descripción.• En cuanto a los clientes la información de interés es: código identificación, apellidos y nombres,dirección, teléfono, ciudad.• Para los vendedores la información que se requiere son los datos principales de su hoja de vida como:cedula apellidos, nombres, género, dirección, teléfono, ciudad.1.Elaborar el modelo entidad relación y modelo relacional de la base de datos 20

×