Introducation of global warming


Published on

Go Green India is doing an initiative with times Of India to make people aware about global warming and its issues and problems.

Published in: News & Politics, Technology
  • Be the first to comment

  • Be the first to like this

Introducation of global warming

  1. 1. Global Warming Introduction : Global Warming is the increase of Earth's average surface temperature due to effect of greenhouse gases, such as carbon dioxide emissions from burning fossil fuels or from deforestation, which trap heat that would otherwise escape from Earth. This is a type of greenhouse effect. Is global warming, caused by human activity, even remotely plausible? Earth's climate is mostly influenced by the first 6 miles or so of the atmosphere which contains most of the matter making up the atmosphere. This is really a very thin layer if you think about it. In the book The End of Nature, author Bill McKibbin tells of walking three miles to from his cabin in the Adirondack's to buy food. Afterwards, he realized that on this short journey he had traveled a distance equal to that of the layer of the atmosphere where almost all the action of our climate is contained. In fact, if you were to view Earth from space, the principle part of the atmosphere would only be about as thick as the skin on an onion! Realizing this makes it more plausible to suppose that human beings can change the climate. A look at the amount of greenhouse gases we are spewing into the atmosphere (see below), makes it even more plausible.
  2. 2. What are the Greenhouse Gases? The most significant greenhouse gas is actually water vapor, not something produced directly by humankind in significant amounts. However, even slight increases in atmospheric levels of carbon dioxide (CO2) can cause a substantial increase in temperature. Why is this? There are two reasons: First, although the concentrations of these gases are not nearly as large as that of oxygen and nitrogen (the main constituents of the atmosphere), neither oxygen or nitrogen are greenhouse gases. This is because neither has more than two atoms per molecule (i.e. their molecular forms are O2 and N2, respectively), and so they lack the internal vibrational modes that molecules with more than two atoms have. Both water and CO2, for example, have these "internal vibrational modes", and these vibrational modes can absorb and reradiate infrared radiation, which causes the greenhouse effect. Secondly, CO2 tends to remain in the atmosphere for a very long time (time scales in the hundreds of years). Water vapor, on the other hand, can easily condense or evaporate, depending on local conditions. Water vapor levels therefore tend to adjust quickly to the prevailing conditions, such that the energy flows from the Sun and re-radiation from the Earth achieve a balance. CO2 tends to remain fairly constant and therefore behave as a controlling factor, rather than a reacting factor. More CO2 means that the balance occurs at higher temperatures and water vapor levels.
  3. 3. How much have we increased the Atmosphere's CO2 Concentration? Human beings have increased the CO2 concentration in the atmosphere by about thirty percent, which is an extremely significant increase, even on inter-glacial timescales. It is believed that human beings are responsible for this because the increase is almost perfectly correlated with increases in fossil fuel combustion, and also due other evidence, such as changes in the ratios of different carbon isotopes in atmospheric CO2 that are consistent with "anthropogenic" (human caused) emissions. The simple fact is, that under "business as usual" conditions, we'll soon reach carbon dioxide concentrations that haven't been seen on Earth in the last 50 million years. Combustion of Fossil Fuels, for electricity generation, transportation, and heating, and also the manufacture of cement, all result in the total worldwide emission of about 22 billion tons of carbon dioxide to the atmosphere each year. About a third of this comes from electricity generation, and another third from transportation, and a third from all other sources. This enormous input of CO2 is causing the atmospheric levels of CO2 to rise dramatically. The following graph shows the CO2 levels over the past 160 thousand years (the upper curve, with units indicated on the right hand side of the graph).
  4. 4. Is the Temperature Really Changing? Yes! As everyone has heard from the media, recent years have consistently been the warmest in hundreds and possibly thousands of years. But that might be a temporary fluctuation, right? To see that it probably isn't, the next graph shows the average temperature in the Northern Hemisphere as determined from many sources, carefully combined, such as tree rings, corals, human records, etc.
  5. 5. Is the Temperature Really Changing? These graphs show a very discernable warming trend, starting in about 1900. It might seem a bit surprising that warming started as early as 1900. How is this possible? The reason is that the increase in carbon dioxide actually began in 1800, following the deforestation of much of Northeastern American and other forested parts of the world. The sharp upswing in emissions during the industrial revolution further added to this, leading to a significantly increased carbon dioxide level even by 1900. Thus, we see that Global Warming is not something far off in the future - in fact it predates almost every living human being today.
  6. 6. How do we know if the temperature increase is caused by anthropogenic emissions? Computer models strongly suggest that this is the case. The following graphs show that 1) If only natural fluctuations are included in the models (such as the slight increase in solar output that occurred in the first half of the 20th century), then the large warming in the 20th century is not reproduced. 2) If only anthropogenic carbon emissions are included, then the large warming is reproduced, but some of the variations, such as the cooling period in the 1950s, is not reproduced (this cooling trend was thought to be caused by sulfur dioxide emissions from dirty power plants). 3) When both natural and anthropogenic emissions of all types are included, then the temperature evolution of the 20th century is well reproduced.
  7. 7. Who are the IPCC? In 1998, the Intergovernmental Panel on Climate Change (IPCC) was established by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in recognition of the threat that global warming presents to the world. The IPCC is open to all members of the UNEP and WMO and consists of several thousand of the most authoritative scientists in the world on climate change. The role of the IPCC is to assess the scientific, technical and socio-economic information relevant for the understanding of the risk of human-induced climate change. It does not carry out new research nor does it monitor climate related data. It bases its assessment mainly on published and peer reviewed scientific technical literature. The IPCC has completed two assessment reports, developed methodology guidelines for national greenhouse gas inventories, special reports and technical papers. Results of the first assessment (1990--1994): confirmed scientific basis for global warming but concluded that ``nothing to be said for certain yet''. The second assessment (1995), concluded that `` ...the balance suggests a discernable human influence on global climate'', and concluded that, as predicted by climate models, global temperature will likely rise by about 1-3.5 Celsius by the year 2100. The next report, in 2000, suggested, that the climate might warm by as much as 10 degrees Fahrenheit over the next 100 years, which would bring us back to a climate not seen since the age of the dinosaurs.
  8. 8. Global Warming Impacts Many of the following "harbingers" and "fingerprints" are now well under way: Rising Seas--- inundation of fresh water marshlands (the everglades), low-lying cities, and islands with seawater. Changes in rainfall patterns --- droughts and fires in some areas, flooding in other areas. See the section above on the recent droughts, for example! Increased likelihood of extreme events--- such as flooding, hurricanes, etc. Melting of the ice caps --- loss of habitat near the poles. Polar bears are now thought to be greatly endangered by the shortening of their feeding season due to dwindling ice packs. Melting glaciers - significant melting of old glaciers is already observed. Widespread vanishing of animal populations --- following widespread habitat loss. Spread of disease --- migration of diseases such as malaria to new, now warmer, regions. Bleaching of Coral Reefs due to warming seas and acidification due to carbonic acid formation --- One third of coral reefs now appear to have been severely damaged by warming seas.
  9. 9. Where do we need to reduce emissions? In reality, we will need to work on all fronts - 10% here, 5% here, etc, and work to phase in new technologies, such as hydrogen technology, as quickly as possible. To satisfy the Kyoto protocol, developed countries would be required to cut back their emissions by a total of 5.2 % between 2008 and 2012 from 1990 levels. Specifically, the US would have to reduce its presently projected 2010 annual emissions by 400 million tons of CO2 . One should keep in mind though, that even Kyoto would only go a little ways towards solving the problem. In reality, much more needs to be done. The most promising sector for near term reductions is widely thought to be coal-fired electricity. Wind power, for example, can make substantial cuts in these emissions in the near term, as can energy efficiency, and also the increased use of high efficiency natural gas generation. The potential impact of efficiency should not be underestimated: A 1991 report to Congress by the U.S. National Academy of Sciences, Policy Implications of Greenhouse Warming, found that the U.S. could reduce current emissions by 50 percent at zero cost to the economy as a result of full use of cost-effective efficiency improvements.