Application Of Seismic Vibration To Overcome Wax Deposition

1,907 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,907
On SlideShare
0
From Embeds
0
Number of Embeds
24
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Application Of Seismic Vibration To Overcome Wax Deposition

  1. 1. Application of Acoustic Vibration to Overcome Wax Deposition in Piping<br />Neelendra Nath<br />SPE MembershipNo.3319219 <br />Maharashtra Institute of Technology, Pune<br />
  2. 2. Overview <br />Introduction<br />Wax Deposition: Cause and Concern<br />Prevention Techniques<br />Proposed Solution<br />Science Behind Technology<br />Wax Deposition Modeling<br />Prevention Modeling<br /> Tool Parameters<br />Conclusion<br />
  3. 3. Introduction<br />
  4. 4. Wax Deposition: Cause and Concerns<br /><ul><li> Microcrystalline Content of Crude
  5. 5. Temperature in the flow line: Cloud Point
  6. 6. Flow Rate
  7. 7. Flow Velocity
  8. 8. Flow Direction: Vertical or Horizontal
  9. 9. Scaling
  10. 10. Reduced Production
  11. 11. Accentuate Corrosion</li></li></ul><li>Prevention Technique<br />
  12. 12. Proposed Solution<br />
  13. 13. Science Behind Technology<br />
  14. 14. Wax Deposition Modeling<br />Vd= f{ T, C, V, Q, v}<br />where, T  Temperature<br />C Paraffin Concentration<br />V  Flow Velocity<br />Q  Flow Rate<br />v  Drift Velocity<br />Concentration  Can be altered by additives<br />Flow Rate & Flow Velocity  Can be controlled but multiple constraints apply<br />Drift Velocity  Dependent factor<br />Temperature  Most easily altered, shows immediate results  “OUR CANDIDATE”<br />
  15. 15. Prevention Modeling <br /> OUR CANDIDATE  Temperature<br /> T = f{Q, h, k, S}<br />Controlled Parameter  Q<br /> Q = f{E, c}<br /> c  Damping Co-efficient (Constant)<br /> E = Area under Hysteresis Loop<br /> = f{ f , Y}<br />* Shearing Strength of Material is a major constraint <br />T > Cloud Point<br />
  16. 16. Tool Parameters<br /> AC Input<br />Charging <br />Tool Positioning<br />Damper Requirement<br />Shielding & Focusing<br /> Temperature Sensing<br />Frequency Range<br />Material Selection<br />
  17. 17. Conclusion<br /> Simple Mechanism<br />Extremely Cheap<br /> Do away with thermal jacketing <br />If surface controlled can be utilized for multiple application<br />Complete solution <br />
  18. 18. References<br />Computational Rheology for Pipeline and Annular Flow: Non-Newtonian Flow Modeling for Drilling and Production, and Flow Assurance Methods in Subsea Pipeline Design  by William C Chid<br />A.R. SolaimanyNazar, B. Dabir, ”Measurement and Modeling of Wax Deposition in Crude Oil Pipelines” , SPE- 69425 MS, presented at SPE Latin American and Caribbean Petroleum Engineering Conference, 25-28 March 2001, Buenos Aires, Argentina<br />Sound and Structural Viberation by Frank J. Fahy 1987<br />Wave Motion by J. Billingham, A.C. King 2000<br />Fundamental of wave and oscillations by K.UnoLingard 1988 <br /> Vibrations and waves in physics by Lain G. Main<br />
  19. 19. Questions ???<br />Thank you !!<br />

×