Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Masters Thesis Defense Presentation


Published on

This the presentation I gave for my thesis defense. It\'s entitled "Using bioclimatic envelope modelling to incorporate spatial and temporal dynamics of climate change into conservation planning".

Published in: Technology
  • Be the first to comment

Masters Thesis Defense Presentation

  1. 1. Using bioclimatic envelope modelling to incorporate spatial and temporal dynamics of climate change into conservation planning By Nancy-Anne Rose NRES MSc Candidate December 14, 2010
  2. 2. Introduction - Climate change impacts on biodiversity <ul><li>Expected to change the distribution of species </li></ul><ul><li>Face extinction, adapt migrate </li></ul><ul><li>Reorganization of current ecological communities into of new assemblages </li></ul>
  3. 3. The problem for biodiversity conservation planning: <ul><li>Existing parks and protected areas may no longer be able to support the species, habitats and values for which they were designated. </li></ul><ul><li>Can we use existing inventories and climate projection tools to identify candidate areas with better prospect for stability … for “connectivity” over time? </li></ul>
  4. 4. B.C. parks and protected areas network <ul><li>Alpine Tundra: 24% </li></ul><ul><li>Bunchgrass: 11% </li></ul><ul><li>Coastal Douglas Fir: 5% </li></ul><ul><li>Interior Cedar Hemlock: 36% </li></ul><ul><li>Ponderosa Pine: 0% </li></ul><ul><li>Sub-boreal Pine Spruce: 0% </li></ul><ul><li>Montane Spruce: 13% </li></ul><ul><li>Sub-boreal Willow: 67% </li></ul>
  5. 5. Nature Conservancy of Canada - Ecoregional Assessment of the Central Interior Ecoregion
  6. 6. Research Objectives <ul><li>Evaluate the likely persistence (continuity) of conservation targets under climate change </li></ul><ul><li>To identify geographical priorities in the development of the Nature Conservancy of Canada’s Central Interior conservation plan </li></ul>
  7. 7. Bioclimatic envelope modelling <ul><li>Based on a set of suitable climate conditions defined by target-specific physiological tolerances </li></ul><ul><li>Conceptual underpinnings in Hutchinson’s niche theory </li></ul><ul><ul><li>A conceptual space occupied by a target </li></ul></ul><ul><ul><li>Multidimensional axes are described by environmental factors </li></ul></ul><ul><ul><li>hypervolume </li></ul></ul>Botrychium crenulatum Crenulate Moonwort
  8. 8. Developmental Tools <ul><li>ClimateBC - climate interpolation and general circulation model (GCM) downscaling tool </li></ul><ul><ul><li>Generates 19 climate variables but to reduce collinearity only </li></ul></ul><ul><ul><ul><li>MAT – mean annual temperature, ºC </li></ul></ul></ul><ul><ul><ul><li>TD – continentality (seasonality), ºC </li></ul></ul></ul><ul><ul><ul><li>AH:M – annual heat moisture index (ratio) </li></ul></ul></ul><ul><ul><ul><li>PAS – precipitation as snow, mm </li></ul></ul></ul><ul><ul><li>3 rd generation of the Canadian GCM “business as usual” (CGCM3 A2) </li></ul></ul><ul><ul><li>4 timeslices (baseline, 2020s, 2050s, 2080s) </li></ul></ul><ul><li>ArcMap 9.2 GIS software </li></ul>
  9. 9. Methods - Development of bioclimatic envelopes <ul><li>Compile information on current distribution (latitude, longitude, elevation) </li></ul><ul><ul><li>103 biogeoclimatic variants </li></ul></ul><ul><ul><li>30 terrestrial ecological units </li></ul></ul><ul><ul><li>73 plant species </li></ul></ul><ul><li>Run through ClimateBC to generate climate data for current distribution </li></ul><ul><li>Determine the 5 th and 95 th percentiles for MAT, TD, AHM, PAS </li></ul><ul><ul><li>CORE BIOCLIMATIC ENVELOPE </li></ul></ul>
  10. 10. Methods – Identify locations of a target’s suitable climate space SUITABLE CLIMATE SPACE
  11. 11. Overlay-Intersection  Suitable Climate Space  Persistent Climate Corridors Nephroma occultum (Cryptic Paw)
  12. 12. Bioclimatic Envelope <ul><li>Describes a target’s physiological tolerances </li></ul><ul><ul><li>Defined by its current distribution </li></ul></ul><ul><li>Environmental factors </li></ul><ul><ul><li>Mean annual temperature and preciptation </li></ul></ul><ul><ul><li>Growing degree days </li></ul></ul><ul><li>Excludes </li></ul><ul><ul><li>Biotic interactions </li></ul></ul><ul><ul><li>Ability to adapt </li></ul></ul>
  13. 13. Suitable Climate Space (SCS) <ul><li>Area(s) of coincidence between the location(s) of target-specific bioclimatic envelopes of all 4 timeslices </li></ul>
  14. 14. Persistent climate corridors (PCC) <ul><li>Area(s) of coincidence of a target’s SCS and current distribution </li></ul><ul><li>Provide climate refuge in the form of climate connectivity or persistence </li></ul><ul><ul><li>Maintaining unique floristics of species assemblages </li></ul></ul>Engelmann Spruce-Sub-alpine Fir Wet Very Cold (ESSFwv)
  15. 15. Conservation target summary <ul><li>Of 206 conservation target groups: </li></ul><ul><ul><li>23% (47/206) - SCS 13% (26/206) - PCC </li></ul></ul><ul><li>B.C. biogeoclimatic variants: </li></ul><ul><ul><li>16% (16/103) - SCS 9% (10/103) - PCC </li></ul></ul><ul><li>Terrestrial ecological units: </li></ul><ul><ul><li>27% (8/30) - SCS 20% (6/30) – PCC </li></ul></ul><ul><li>Listed plant species: </li></ul><ul><ul><li>32% (23/73) - SCS 10% (10/73) – PCC </li></ul></ul>
  16. 16. B.C. Biogeoclimatic Variants: Interior Cedar Hemlock Hazelton Moist Cold Current distribution: 5,343 km 2 SCS: 3,677 km 2 PCC: 203 km 2 Representation: 3.8%
  17. 17. Terrestrial Ecological Unit: North Pacific Interior Lodgepole Pine-Douglas Fir Woodland and Forest <ul><li>Current distribution: 11,828 km 2 SCS: 22,661 km 2 PCC: 1,131 km 2 Representation: 10% </li></ul>
  18. 18. Listed Plant Species <ul><li>Malaxis paludosa </li></ul><ul><ul><li>SCS: 178,348 km 2 </li></ul></ul><ul><ul><li>2/2 occurrences are PCCs </li></ul></ul><ul><li>Carex tenera </li></ul><ul><ul><li>SCS: 49,081 km 2 </li></ul></ul><ul><ul><li>1/7 occurrences are PCCs </li></ul></ul><ul><li>Juncus stygius </li></ul><ul><ul><li>SCS: 80,991 km 2 </li></ul></ul><ul><ul><li>1/2 occurrences are PCCs </li></ul></ul>
  19. 19. Areas of overlapping PCCs have a higher conservation value NB: TEU is terrestrial ecological unit
  20. 20. Application to conservation planning <ul><li>Nature Conservancy of Canada </li></ul><ul><ul><li>Marxan - reserve selection software </li></ul></ul><ul><ul><ul><li>Various outputs including wildlife, plants, aquatic features, ecosystem services, natural disturbance </li></ul></ul></ul><ul><ul><ul><li>Persistent climate corridors </li></ul></ul></ul><ul><ul><li>Suitability Index – with and without parks </li></ul></ul><ul><ul><ul><li>Measures human impact i.e. density and proximity of roads </li></ul></ul></ul><ul><ul><ul><li>High impact (high cost) -> Low score -> Low value </li></ul></ul></ul>
  21. 21. Marxan Comparison – Suitability Index <ul><li>Average Marxan scores: </li></ul><ul><li>Species: 100 </li></ul><ul><li>TEU: 53 </li></ul><ul><li>Variants: 73 </li></ul><ul><li>Multiple PCC: 82 </li></ul>
  22. 22. Conclusions <ul><li>Large impacts for many plant species, communities, and ecosystems in central B.C. are expected </li></ul><ul><li>Persistent climate corridors - a conceptually simple but powerful tool </li></ul><ul><ul><li>Pre and post-processing stages </li></ul></ul><ul><li>Help focus conservation priorities </li></ul>
  23. 23. Thanks! <ul><li>Dr. Phil Burton, Supervisor </li></ul><ul><li>Drs. Chris Johnson and Brian Menounos, Committee Members </li></ul><ul><li>Dr. Sybille Haeussler, External Examiner </li></ul><ul><li>Pierre Iachetti, Nature Conservancy of Canada </li></ul><ul><li>NSERC IPS, UNBC and Forest Investment Account’s Forest Science Program </li></ul><ul><li>The Canadian Forest Service </li></ul><ul><li>Friends and fellow grad students </li></ul>
  24. 24. Questions ??
  25. 25. Ecoregional assessment process <ul><li>Conservation blueprints and portfolios </li></ul><ul><li>Multiple inputs and stakeholders </li></ul><ul><li>Accomplish using Marxan </li></ul><ul><li>Steps include </li></ul><ul><ul><li>Identify and set goals for conservation targets </li></ul></ul><ul><ul><li>Refine portfolios through expert review </li></ul></ul><ul><li>My focus: site selection and prioritization </li></ul>
  26. 26. Uncertainty <ul><li>Ubiquitous, many sources </li></ul><ul><li>Error and sensitivity analyses </li></ul><ul><li>Sources should be accounted for, SOME examples include: </li></ul><ul><ul><li>Source data e.g. sample size </li></ul></ul><ul><ul><li>GCM and bioclimatic envelope modelling (BEM) limitations e.g. BEM does not consider biotic interactions, adaptation </li></ul></ul>
  27. 27. Limiting Climate Variables
  28. 28. Species response according to habitat type
  29. 29. ClimateBC/PP Variables <ul><li>MAT - mean annual temperature </li></ul><ul><li>MWMT - mean warmest month temperature </li></ul><ul><li>MCMT - mean coldest month temperature </li></ul><ul><li>TD - temperature difference between MCMT and MWMT (continentality) </li></ul><ul><li>MAP - mean annual precipitation </li></ul><ul><li>MSP - mean summer precipitation </li></ul><ul><li>AH:M - annual heat moisture index </li></ul><ul><li>SH:M - summer heat moisture index </li></ul><ul><li>DD<0 - degree days below 0C </li></ul><ul><li>DD>5 - degree days above 5C </li></ul><ul><li>DD5-100 - Julian date on which DD>5 reaches 100 </li></ul><ul><li>DD<18 - degree days below 18C </li></ul><ul><li>DD>18 - degree days above 18C </li></ul><ul><li>NFFD - number of frost-free days </li></ul><ul><li>FFP - frost-free period </li></ul><ul><li>bFFP - beginning of the frost-free period (Julian date) </li></ul><ul><li>eFFP - end of the frost-free period (Julian date) </li></ul><ul><li>PAS - precipitation as snow </li></ul><ul><li>EXT - extreme minimum temperature </li></ul>