Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)

5,240 views

Published on

Published in: Technology, Business
  • Be the first to comment

研究者の研究履歴による学術の動向の把握とその予測 (第11回データマイニング+WEB@東京)

  1. 1. 研究者の研究履歴による 学術の動向の把握とその予測 2011/06/12  第 11 回データマイニング +WEB@ 東京  @nagayoshi3 山下 長義(やました ながよし)  1 2011/6/121
  2. 2. 1.自己紹介 2.研究発表 「研究者の研究履歴による学術の動向の把握と その予測」 2011/6/122
  3. 3. 1.自己紹介  大阪大学 大学院情報科学研究科 情報数理学専攻で博士号  (情報科学)を取得 沼尾研究室  帰納論理プログラミング,音楽情報処理など  センサーデータマイニング,次世代知的交通制御シス テム構築,マルチエージェント協調アルゴリズムなど 研究テーマ Web リンクマイニング 博士論文のタイトル「構造同値に基づく WWW 解析に関する 研究」 関連テーマ  Web マイニング,社会ネットワーク科学,複雑 ネットワーク科学 最近は,機械学習の勉強をしている. 2011/6/123
  4. 4. 平成21年2月から独立行政法人日本学術振興会(学 振)にポスドクとして所属 日本学術振興会は,学術研究の助成、研究者の養成のた めの資金の支給、学術に関する国際交流の促進等を行うこ とにより、学術の振興を図ることを目的とする独立行政法 人である. 科学研究費補助金は、人文・社会科学から自然科学まで全 ての分野にわたり、基礎から応用までのあらゆる「学術研 究」(研究者の自由な発想に基づく研究)を格段に発展さ せることを目的とする「競争的研究資金」であり、ピア・ レビューによる審査を経て、独創的・先駆的な研究に対す る助成を行うものです。 平成 23 年度 予算 2,633 億円 応募件数 9 万件 採択率2011/6/124
  5. 5. 学振での業務 科学研究費補助金の応募データの分析 分析資料の作成,ワーキンググループでの報告や 研究会等 での研究発表を行っている. 就職活動中  日本学術振興会での任期は来年 3 月まで これまで,7年半行ってきたデータマイニングの研究経験 を生かせる職を探しています. 2011/6/125
  6. 6. 2 .発表 研究者の研究履歴による 学術の動向の把握とその予測 6 2011/6/126 第 161 回 情報処理学会 知能システム研究会 (SIG-ICS) http://www.nagao.nuie.nagoya-u.ac.jp/sig-ics/main.htm 山下 長義,沼尾 正行,市瀬 龍太郎 科研費における応募細目の変遷による細目間の関係抽出とその予測 情報処理学会研究報告, Vol. 2010-ICS-161, No. 2 2010
  7. 7.  科学における知の発見は,既存の研究の新たな組み合わ せから生み出されることが多いため,学術の動向を把握 することは重要である.しかし,学問が細分化されそれ ぞれの研究分野が高度化されているため,学術の動向を 把握することは難しいのが現状である.    科研費の応募データを用いて,研究者の研究履歴を 抽出することにより,学術の動向を把握する手法を提案 する.   7 知能 情報 学 言 語 学 医用 シス テム 社会 システ ム工学 2011/6/127 背景 1
  8. 8.  自らの関連分野の研究者が次にどの分野の研究を行なお うとしているかなどの学術動向の予測できれば,将来の 研究方針の決定に役立つことが期待される.   8 知能 情報 学 言 語 学 医用 シス テム 社会 システ ム工学 ? 科研費の応募データを用いて,学術の動向を予測する手法を提 案する. 2011/6/128 背景 2
  9. 9. 学術動向を調査する研究 論文のデータ(共著関係,文献情報,キーワード) 様式が一様でない. 様々な分野の論文をそろえることが難しい. 科研費の応募データ 応募様式が一様 人文学・社会科学から医学まで幅広い分野をカバー 細目などの研究領域やキーワード, 研究代表者・研究分担者の関係,研究者の所属など 9 2011/6/129
  10. 10. 科学研究費補助金(科研費) 基礎研究から応用までの学術研究を発展させること を目的とする競争的資金 人文・社会科学から自然科学までをカバー 科研費の応募データ 応募課題の研究領域を表す細目やキーワード,研究 種目など 10 2011/6/1210 審査を希望する分野 「系・分野・分科・細目表」 から応募研究者によって選択 される.
  11. 11. 情報学における細目 分野 分科 細目 総合領域 情報学 情報学基礎 ソフトウェア 計算機システム・ネットワーク A 計算機システム・ネットワーク B メディア情報学・データベース A メディア情報学・データベース B 知能情報学 知覚情報処理・知能ロボティクス A 知覚情報処理・知能ロボティクス B 感性情報学・ソフトコンピューティング A 感性情報学・ソフトコンピューティング B 図書館情報学・人文社会情報学 A 図書館情報学・人文社会情報学 B 認知科学 統計科学 生体生命情報学 A 生体生命情報学 B 11 2011/6/1211 それぞれの細目 に細目表キー ワードがある.
  12. 12. 細目表キーワード例 細目 知能情報学 ( A )探索・論理・推論アルゴリズム、( B ) 学習と知識獲得、( C )知識ベ一ス・知識シス テム、( D )知的システムアーキテクチャ、 ( E )知能情報処理、( F )自然言語処理、 ( G )知識発見とデータマイニング、( H )知 的エージェント、( J )オントロジー、( K ) ウェブインテリジェンス 知覚情報処理・知能ロボ ティクス A 〔知覚情報処理〕 ( A )パターン認識、( B )画像情報処理、 ( C )音声情報処理、( D )コンピュータビ ジョン、( E )情報センシング、( F )センサ 融合・統合、( G )センシングデバイス・シス テム 2011/6/1212
  13. 13. 基盤研究 S ・ A ・ B ・ C 独創的・先駆的な研究 若手研究 A ・ B 39 歳以下の研究者が一人でおこなう研究 挑戦的萌芽研究 独創的な発想に基づく挑戦的で高い目標設定を掲げ た芽生え期の研究 基盤研究 S ・ A ・ B ,若手研究 A と重複して助成を 受けることが可能である. 今回は平成 15 年度から平成 22 年度までの 基盤研究S・A・B・C,挑戦的萌芽研究,若手研 究 S ・ A ・ B の応募データを用いる. 13 2011/6/1213 科研費における主な研究種目
  14. 14. 研究者の研究履歴による 学術動向を把握する手法の提案 研究者の研究履歴 同じ時期に多数の研究者が研究分野を変更した場合,学術 の動向が変化したと考えられる. 科研費の応募細目  科研費では研究者自らの研究計画の内容から審査を希望す る細目を選択しなければならない. 14 2011/6/1214 H22 細目 A H23 細目 B 研究内容の変更
  15. 15. 移動研究者数 細目 x に応募した 研究者集合 新規+継続 細目 y に応募した 研究者集合 新規 2011/6/1215 細目 x から細目 y への移動研究者数 一年後
  16. 16. 移動研究者数による 研究領域ネットワークの作成方法 16 細目X 細目 Z 細目 Y 2011/6/1216 細目対を移動する研究者数が 3 以上の 場合,ノード間をリンクでつなぐ.
  17. 17. 研究領域ネットワーク 17 2011/6/1217 H21 H22
  18. 18. 評価 「メディア情報学・データベース B 」 のキーワードにてヒュー マンインターフェイスを選択した研究者は,次回に他の細目へ応募 しているケースが多く,ヒューマンインターフェイスの研究が積極 的に他分野に応用されている. 「知覚情報処理・知能ロボティクス B 」 から移動した研究者は ,移動先の細目でセンサー関連のキーワードを選択していることか ら,ロボットとセンサー関連の研究が強くなってきている. 「生体生命情報学」から「知能情報学」へ移動している研究者が 多いことから,情報科学とバイオサイエンスの関わりが強くなって きている. 18 2011/6/1218
  19. 19. 学術動向の予測(研究者の応募細目の予測) 基盤研究・若手研究と挑戦的萌芽研究との重複応募状況                学術動向(応募細目の変 遷)の先行指標 19 研究領域ネットワークにおける                共通の隣接ノード数(共参 照ノード数) 2011/6/1219 基盤・若 手 細目 C 挑戦的萌芽 細目 D 高い目標設定を掲げた 芽生え期の研究 研究の基盤
  20. 20. 重複応募研究者数 20 細目 x に応募 した研究者集 合 細目 y に応募し た研究者集合 累積重複応募数 2 年前から現在までの 3 年間の重複応募研究者数の合計 2011/6/1220 基盤・若手研 究 挑戦的萌芽研究 細目 x と細目 y における重複応募研究者数
  21. 21. 共参照ノード数 21 x y 2011/6/1221 ノード x を参照している ノード集合 ノード y を参照している ノード集合 研究領域ネットワークにおけるノード x とノード y の共参照ノード数
  22. 22. 共参照ノード数 22 x y 2011/6/1222 ノード x を参照している ノード集合 ノード y を参照している ノード集合 研究領域ネットワークにおけるノード x とノード y の共参照ノード数 共参照ノード数 これら2つの集合の積集合の大 きさ
  23. 23. 累積重複応募数,共参照ノード数によって 移動研究者数の増加を予測(予備実験) 研究領域ネットワーク上にあるすべてのノードの組み合わせ(細目対)に ついて 累積重複応募数と共参照ノード数の合計を計算 「この合計が 8 以上の細目対では,翌年 移動研究者数の増分が増加す る」と 予測する仮説を立て,その検証を行う. 具体的には, H17 において合計値が 8 以上の細目対にて, H18 において移動研究者数 が増加するか H20 において合計値が 8 以上の細目対にて, H21 において移動研究者数 が増加するか H18 , H21 にて,移動研究者数の増分が 1 以上である細目対を 「実際に増加した」とし,予測結果の答え合わせをする.    23 2011/6/12 23   適合率 = = =0.71 実際に増加した細目対の数       10 合計値が 8 以上の細目対の数 14
  24. 24. まとめとこれからの課題 科研費の応募履歴を用いた研究履歴によって学術の動向 の現状を把握できることを示し,挑戦的萌芽研究の重複 応募状況によって高い適合率で研究者の移動が増加する 細目対を予測することで提案手法の有効性を示した. これからの課題 •科研費の応募履歴が学術の動向を示していることを裏付 けるために,他の情報源からの証拠を集めること •機械学習の手法を用いて本格的な予測を行うこと    24 2011/6/1224

×