Limit fungsi-soal-jawab1

18,196 views

Published on

0 Comments
9 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
18,196
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
302
Comments
0
Likes
9
Embeds 0
No embeds

No notes for slide

Limit fungsi-soal-jawab1

  1. 1. Soal Latihan dan Pembahasan Limit Fungsi Di susun Oleh : Yuyun Somantri1 http://bimbinganbelajar.net/ Di dukung oleh : Portal edukasi Gratis Indonesia Open Knowledge and Education http://oke.or.idTutorial ini diperbolehkan untuk di copy, di sebarluaskan, di print dan diperbaiki dengan tetapmenyertakan nama penulis、 tanpa ada tujuan komersial1 Lahir di Bandung tahun 1956, Lulus dari SMK Kimia melanjutkan studinya ke UPI (IKIP Bandung), lalumeneruskan studinya lagi bidang matematika dan dari tahun 1984 sampai saat ini mengajar matematika diSMA Negeri 3 Tasikmalaya
  2. 2. 1 Limit Fungsi lim x 2 − 41. = ..... x → 2 x3 + 1 Jawab : lim x 2 − 4 4 − 4 = = 0 x → 2 x3 + 1 8 + 1 lim x 2 + 3 x − 182. = .... x → 3 x 2 − 3x Jawab : lim ( x + 6)( x − 3) 3 + 6 = = 3 x → 3 x ( x − 3) 3 lim t− 23. = .... t→ 4 t− 4 Jawab : lim t− 2 1 1 = = t → 4 ( t − 2)( t + 2) 2 + 2 4 lim 9 − x24. = .... x → 3 4 − x2 + 7 Jawab : lim 16 − ( x 2 + 7) lim (4 − x 2 + 7 )(4 + x2 + 7 ) = = 4+ 4 = 8 x → 3 4 − x2 + 7 x → 3 4− x2 + 7 lim x 2 − 45. = ..... x → ∞ x3 + 1 Jawab : lim x 2 lim 1 = = 0 x → ∞ x3 x → ∞ x
  3. 3. 2 lim (4 + 5 x )(2 − x )6. = .... x → ∞ ( 2 + x)(1 − x) Jawab : lim − 5 x 2 = 5 x → ∞ − x2 lim7. x2 + x + 5 − x 2 − 2 x + 3 = ..... x→ ∞ Jawab : lim b− p ax 2 + bx + c − ax 2 + px + q = x→ ∞ 2 a lim 1+ 2 3 x2 + x + 5 − x2 − 2x + 3 = = x→ ∞ 2 1 2 lim 1 − sin 2 x8. = ...... x → π2 (sin 1 x − cos 1 x) 2 2 2 Jawab : lim (1 − sin x)(1 + sin x) lim (1 − sin x )(1 + sin x) = = 1+ 1 = 2 x → 2 sin 2 x + cos 2 x − 2 sin 2 x cos 2 x x → π2 π 2 1 2 1 1 1 1 − sin x lim sin 6 x9. = ..... x → 0 sin 2 x Jawab : lim sin 6 x 6 = = 3 x → 0 sin 2 x 2 lim cos 2 x − 110. = ...... x→ 0 x2 Jawab : lim 1 − 2 sin 2 x − 1 lim sin x sin x = − 2. . = − 2.1.1 = − 2 x→ 0 x 2 x→ 0 x x
  4. 4. 3 lim sin( x − 2)11. = ....... x → 2 x2 − 4 Jawab : lim sin( x − 2) lim sin( x − 2) 1 1 1 = . = 1. = x → 2 ( x − 2)( x + 2) x → 2 x − 2 x + 2 2+ 2 4 lim x 2 + x − 612. = ...... x → 3 x2 + 5x + 6 Jawab : lim x 2 + x − 6 9+ 3− 6 1 = = x → 3 x + 5 x + 6 9 + 15 + 6 5 2 lim 2 x 2 − x − 113. = ...... x → 1 3x 2 − x − 2 Jawab : lim 4 x − 1 3 = (Menggunakan bantuan turunan) x → 1 6x − 1 5 lim 1 − x 214. = ...... x → 1 x− 1 Jawab : lim − 2 x = −2 x→ 1 1 lim 2 x 2 − 215. = ...... x → 1 x− 1 Jawab : lim 4 x = 4 x→ 1 1
  5. 5. 4 lim t3 − 816. = ...... t → 2 t2 + t − 6 Jawab : lim 3t 2 12 = t → 2 2t + 1 5 lim (3x − 1) 2 − 417. = ...... x → 1 x2 + 4x − 5 Jawab : lim 18 x − 6 12 = = 2 x → 1 2x + 4 6 lim  2 x 2 − 8 x 2 − 2 x 18.  +  = ...... x → 2 x− 2  2x − 4   Jawab : lim  ( x − 2)(2 x + 4) x( x − 2)  2   +  = 4+ 4+ = 9  x→ 2 x− 2 2( x − 2)  2 lim  6 − x 1 19.  2 −  = ...... x → 2  x − 4 x − 2 Jawab : lim − 2 ( x − 2) − 2 1 = = − x → 2 ( x − 2)( x + 2) 4 2 lim 6 x 2 − 4 x20. = ..... x → 0 2x2 + x Jawab : lim 12 x − 4 − 4 = = −4 x → 0 4x + 1 1
  6. 6. 5 lim x− 121. = ....... x → 1 1− x Jawab : lim 1 1 = − 1 = −2 x→ 1 − 2 x 1 2 lim x 2 − 1622. = ...... x → 4 x− 4 Jawab : lim ( x − 4 ) 2 ( x + 4) lim = x − 4 ( x + 4) = 0.8 = 0 x→ 4 x− 4 x→ 4 lim 3 − 2x + 923. = ..... x→ 0 x Jawab : lim 3 − 2x + 9 3 + 2x + 9 lim 9 − 2x − 9 − 2 1 . = = = − x→ 0 x 3+ 2 x + 9 x → 0 x(3 + 2 x + 9 ) 3 + 3 3 lim x2 − 924. = ...... x→ 3 x 2 + 16 − 5 Jawab : lim ( x 2 + 16 − 5)( x 2 + 16 + 5) = 5 + 5 = 10 x→ 3 x 2 + 16 − 5 lim x− x25. = ....... x→ 0 x+ x Jawab : lim x (1 − x) 1− 0 = =1 x→ 0 x (1 + x) 1+ 0
  7. 7. 6 lim 6 x − 2 − 3x + 726. = ...... x→ 3 x− 3 Jawab : lim 6 x − 2 − 3 x + 7 6 x − 2 + 3x + 7 . x→ 3 x− 3 6 x − 2 + 3x + 7 lim 3( x − 3) 3 = = x → 3 ( x − 3)( 6 x − 2 + 3 x + 7 ) 8 lim 2 x 2 − 5 x27. = ...... x → 0 3− 9+ x Jawab : lim 2 x 2 − 5 x 3 + 9 + x x (2 x − 5)(3 + 9 + x) − 5 (3 + 3) . = = = 30 x → 0 3− 9+ x 3+ 9+ x − x −1 lim x2 + 3 − x − 128. = ....... x→ 1 1 − x2 Jawab : lim x 2 + 3 − ( x + 1) x 2 + 3 + ( x + 1) lim 2 (1 − x) 1 . = = x→ 1 1− x 2 x 2 + 3 + ( x + 1) x → 1 (1 − x )(1 + x)( x 2 + 3 + x + 1) 4 lim 3 x 2 − 23 x + 129. = ...... x→ 1 ( x − 1) 2 Jawab : lim (3 x − 1) 2 1 1 = = x → 1 (3 x − 1)( x + 3 x + 1) 3 2 2 (1 + 1 + 1) 2 9 lim x − 2730. = ...... x → 27 3 x − 3 Jawab : lim (3 x − 3) (3 x 2 + 33 x + 9) = 9 + 9 + 9 = 27 x → 27 3 x− 3
  8. 8. 7 lim a a − b b31. = ....... a→ b a− b Jawab : lim ( a − b )(a + ab + b) = b+ b.b + b = 3b a→ b a− b lim ax + b − x 332. Jika = maka tentukan a + b x→ 4 x− 4 4 Jawab : 0 Bentuk di atas jika x = 4 maka harus berbentuk . 0 Jadi 4a + b – 2 = 0 atau 4a + b = 2 ………….. (1) Dengan menggunakan bantuan turunan maka : lim a − 2 x 3 1 1 3 = ⇒ a− = ⇔ a= 1 x→ 4 1 4 4 4 4.1 + b = 2 ⇔ b = − 2 a + b = 1− 2 = − 1 lim (2 x − 3 x + 1)( x − 1)33. = ....... x→ 1 ( x − 1) 2 Jawab : lim ( x − 1) 2 (2 x − 1) 2− 1 1 = = x → 1 ( x − 1) ( x + 1) 2 (1 + 1) 2 4 lim 1+ x − 134. = ...... x → 0 1+ x − 1 3 Jawab : lim (6 1 + x − 1)(6 (1 + x) 2 + 6 1 + x + 1) 1 + 1 + 1 3 = = x→ 0 (6 1 + x − 1)(6 1 + x + 1) 1+ 1 2
  9. 9. 8 lim 2+ x− 2− x35. = ........ x→ 0 x Jawab : lim 2+ x− 2− x 2+ x+ 2− x . x→ 0 x 2+ x+ 2− x lim 2 x 2 1 = = = 2 x→ 0 x( 2 + x+ 2− x) 2+ 2 2 lim  2 3 36.  2 − 2  = ....... x → 2  x − 4 x + 2x − 8  Jawab : lim 2 ( x + 4) − 3 ( x + 2) lim − ( x − 2) 1 = = − x → 2 ( x − 2)( x + 2)( x + 4) x → 2 ( x − 2)( x + 2)( x + 4) 24 lim37. (2 x − 5)(2 x + 1) − (2 x − 5) = ....... x→ ∞ Jawab : lim − 8 − (− 20) 4 x2 − 8x − 5 − 4 x 2 − 20 x + 25 = = 3 x→ ∞ 2 4 lim 2 x 2 + 3 x38. = ...... x → ∞ x2 − x Jawab : lim 2 x 2 lim = 2x = ∞ x→ ∞ x 2 x→ ∞ lim39. x(4 x + 5) − 4 x 2 + 3 = ....... x→ 5 Jawab : lim 5− 0 5 4 x2 + 5x − 4 x2 + 0x + 3 = = x→ 5 2 4 4
  10. 10. 9 lim40. ( x + a)( x + b) − x = ....... x→ ∞ Jawab : lim a+ b− 0 a+ b x 2 + (a + b) x + ab − x2 + 0x = = x→ ∞ 2 1 2 lim cos 2 x41. = ......... x → 4 sin x − cos x π Jawab : lim (cos x − sin x)(cos x + sin x ) 1 2+ 1 2 = 2 2 = − 2 x → π4 − (cos x − sin x) −1 lim sin ax42. = ....... x → 0 sin bx Jawab : lim sin ax bx a lim sin ax bx a a a . . = . . = 1.1. = x → 0 sin bx ax b x → 0 ax sin bx b b b lim sin 2 x43. = ....... x → 0 3 − 2x + 9 Jawab : lim 2 sin x cos x 3 + 2x + 9 . x → 0 3 − 2x + 9 3 + 2x + 9 lim sin x cos x.(3 + 2 x + 9 ) 1.(3 + 3) = . = 1. = −6 x→ 0 x −1 −1 lim 1 − cos x44. = ........ x → 0 x sin 2 x Jawab : lim 2 sin 2 1 x lim sin 1 x sin 1 x 1 1 2 = 2 . 2 = 1. 2 = x → 0 x sin 2 x x → 0 2 x sin 2 x 1 2 4
  11. 11. 10 lim x tan x45. = ........ x → 0 1 − cos 2 x Jawab : lim x tan x lim 1 x tan x 1 = . . = x → 0 2 sin x x → 0 2 sin x sin x 2 2 lim tan x46. = ....... x → 0 x2 + 2x Jawab : lim tan x 1 1 1 . = 1. = x → 0 x x+ 2 2 2 lim 1 − cos x47. = ...... x → 0 5x 2 Jawab : lim 2 sin 2 1 x 2 1 1 1 2 = . . = x → 0 5x2 5 2 2 10 lim sin x48. = ...... x → 0 1− x − 1 Jawab : lim sin x 1− x + 1 lim sin x 1 − x + 1 1+ 1 . = . = 1. = −2 x → 0 1− x − 1 1− x + 1 x → 0 x −1 −1 lim cot x49. = ...... x → 0 cot 2 x Jawab : lim 1 lim tan 2 x tan x = = 2 x→ 0 1 tan 2 x x → 0 tan x
  12. 12. 11 lim sin 4 x + sin 2 x50. = ...... x→ 0 3 x cos x Jawab : lim 2 sin 3x cos x = 2.1 = 2 x → 0 3 x cos x lim x sin x51. = ....... x → 0 1 − cos 4 x Jawab : lim x sin x lim 1 x sin x 1 1 1 1 = . . = . . = x → 0 2 sin 2 x x → 0 2 sin 2 x sin 2 x 2 2 2 8 2 lim cos 4 x − 152. = ....... x → 0 x tan 2 x Jawab : lim − 2 sin 2 2 x lim sin 2 x sin 2 x 2 2 = − 2. . = − 2. . = − 4 x → 0 x tan 2 x x→ 0 x tan 2 x 1 2 lim sin 2 2 x53. = ........ x → 0 x 2 cos 2 x Jawab : lim sin 2 x sin 2 x 1 2 2 1 . . = . . = 4 x→ 0 x x cos 2 x 1 1 1 lim 7 x 2 + sin( 2 x 2 )54. = ........ x→ 0 tan 2 3x Jawab : lim ( 7 x) 2 sin( 2 x) 2 7 2 + = + =1 x → 0 (tan 3 x) 2 (tan 3 x) 2 9 9
  13. 13. 12 lim cos 4 x − 155. = ........ x → 0 cos 5 x − cos 3x Jawab : lim − 2 sin 2 2 x lim sin 2 x sin 2 x 2 2 = . = . =1 x → 0 − 2 sin 4 x sin x x → 0 sin 4 x sin x 4 1 lim 4x56. = ........ x → 0 x + sin 3 x Jawab : lim 1 lim 1 1 = = =1 x→ 0 x + sin 3 x 4x x→ 0 1 4 + sin 3 x 4x 1 4 + 3 4 lim sin(2 x 2 )57. = ........ x → 0 x 2 + sin 2 3x Jawab : lim 1 1 1 = = x→ 0 x2 + sin 2 3 x 1 2 + 9 2 5 sin 2 x 2 sin( 2 x ) 2 lim sin 4 x. tan 2 3 x + 6 x 358. = .......... x → 0 2 x 2 .sin 3x. cos 2 x Jawab : lim sin 4 x tan 2 3 x 1 6 x2 x 1 . . + . 2. . x → 0 sin 3 x ( 2 x) 2 cos 2 x 2 x sin 3x cos 2 x 4 9 1 = . .1 + 3.1. .1 = 7 3 2 3 lim 1 − cos 2 x − cos x sin 2 x59. = ........ x→ 0 x4 Jawab : lim sin 2 x (1 − cos x ) lim sin 2 x sin 2 1 x 1 = 2. 2 . 2 = 2.12.( 1 ) 2 = x→ 0 x 4 x→ 0 x x 2 2 2
  14. 14. 13 lim sin (1 − 1 ) cos (1 − 1 )60. x x = ........ x→ 1 x− 1 Jawab : lim sin (1 − 1 ) cos (1 − 1 ) lim sin (1 − 1 ) cos (1 − 1 ) x x = x . x = 1.1 = 1 x→ 1 x(1 − x ) 1 x → 1 1− x 1 x lim sin (π x − π )61. = ........ x → 1 ( x − 1) cos (π x − π ) Jawab : lim sin π ( x − 1) 1 . = π .1 = π x→ 1 x− 1 cos (π x − π ) lim x− k62. = ........ x → k sin ( x − k ) + 2k − 2 x Jawab : lim 1 1 sin( x − k ) 2( x − k ) = = −1 x→ k x− k − x− k 1− 2 lim 1 − cos 2 ( x − 2)63. = ........ x → 2 3x 2 − 12 x + 12 Jawab : lim sin 2 ( x − 2) lim sin( x − 2) sin( x − 2) 1 1 = . . = x → 2 ( x − 2)(3 x − 6) x → 2 x − 2 x− 2 3 3 lim ( x + 6) sin ( x + 2)64. = ....... x → − 2 x 2 − 3 x − 10 Jawab : lim x + 6 sin ( x + 2) 4 . = − x → −2 x− 5 x+ 2 7 lim x 2 sin 2 x65. = ....... x → π x− π Jawab : lim 2 x sin 2 x + 2 x 2 cos 2 x = 0 + 2π 2 = 2π 2 x→ π 1

×