Bright blue marble floating in space Ecology Chapter 50 Our first power point! Aren't you excited??
<ul><li>Ecology </li></ul><ul><ul><li>The scientific study of the interactions between organisms and the environment.  </l...
Everything links to evolution <ul><li>Ecology & Evolution </li></ul><ul><ul><li>Darwin proposed that environmental factors...
All Environments Include: <ul><li>Abiotic factors </li></ul><ul><ul><li>non-living chemical & physical factors </li></ul><...
Levels of ecology <ul><li>Biosphere – the broadest unit of study </li></ul><ul><ul><li>Ecosystems </li></ul></ul><ul><ul><...
Dispersal and Distribution <ul><li>How is distribution of organisms limited? </li></ul><ul><ul><li>Does an organisms envir...
Earth’s biomes
Marine intertidal coral reef benthos
Tropical rainforest distribution : equatorial precipitation : very wet temperature : always warm characteristics : many pl...
Savanna distribution : equatorial precipitation : seasonal, dry season/wet season temperature : always warm characteristic...
Desert distribution : 30°N & S latitude band precipitation : almost temperature : variable daily & seasonally, hot & cold ...
Temperate Grassland distribution : mid-latitudes, mid-continents precipitation : seasonal, dry season/wet season temperatu...
Temperate Deciduous Forest distribution : mid-latitude, northern hemisphere precipitation : adequate, summer rains, winter...
Coniferous Forest (Taiga) distribution : high-latitude, northern hemisphere precipitation : adequate to dry (temperate rai...
Arctic Tundra distribution : arctic, high-latitude, northern hemisphere precipitation : dry  temperature : cold year round...
Alpine Tundra distribution : high elevation at all latitudes precipitation : dry  temperature : cold year round characteri...
Population Ecology Chapter 52
Changes to  population size <ul><li>Adding & removing individuals from a population </li></ul><ul><ul><li>birth </li></ul>...
Growth rate <ul><li>Exponential growth  </li></ul><ul><ul><li>characteristic of a population without limiting factors </li...
Carrying capacity <ul><li>Can populations continue to grow exponentially? </li></ul><ul><ul><li>of course NOT! </li></ul><...
Model of growth <ul><li>Decrease in rate of growth as reach  carrying capacity </li></ul>
Different life strategies <ul><li>K-selection </li></ul><ul><li>r-selection </li></ul>K-selection r-selection mortality co...
Reproductive strategies <ul><li>K-strategy </li></ul><ul><ul><li>have few offspring & invest a lot of energy in raising th...
Predator – prey interactions <ul><li>Population cycles </li></ul>
Age structure <ul><li>Relative number of individuals of each age </li></ul>What do the data imply about population growth ...
Human population <ul><li>What factors have contributed to this exponential growth pattern?  </li></ul>1650  500 million 2...
Community Ecology Chapter 53
Inter-species interactions  <ul><li>Symbiotic interactions </li></ul><ul><ul><li>competition  (-/-) </li></ul></ul><ul><ul...
commensalism (+/0) (+/+) mutualism predation (+/-) competition (-/-)
Niche  <ul><li>An organism’s niche is its ecological role </li></ul><ul><li>habitat = address ,  niche = job </li></ul>Res...
Niche & competition <ul><li>Competitive Exclusion </li></ul><ul><ul><li>No two similar species can occupy the same niche a...
Predation drives evolution <ul><li>Predators adaptations </li></ul><ul><ul><li>locate & subdue prey </li></ul></ul><ul><li...
Trophic structure <ul><li>Food chains </li></ul><ul><ul><li>feeding relationships </li></ul></ul><ul><ul><li>food chain us...
Energy transfer <ul><li>Energy in </li></ul><ul><ul><li>from the Sun </li></ul></ul><ul><ul><li>captured by  autotrophs  =...
Energy inefficiency incomplete digestion metabolism
Pyramids of production <ul><li>represent the loss of energy from a food chain </li></ul><ul><ul><li>how much energy is tur...
Food webs <ul><li>Food chains are hooked together into  food webs </li></ul><ul><li>Who eats whom? </li></ul><ul><ul><li>a...
Implications  <ul><li>Dynamics of energy through ecosystems have important implications for human populations </li></ul><u...
Disturbances  <ul><li>Most communities are in a state of  change due to disturbances   </li></ul><ul><ul><li>fire, weather...
Disturbances  <ul><li>Disturbances are often necessary for community development & survival </li></ul>
Ecological cycle <ul><li>fire as part of a natural community cycle </li></ul>
Ecological succession <ul><li>The sequence of community changes after a disturbance </li></ul><ul><ul><li>transition in sp...
Succession <ul><li>From bare soil, then… </li></ul><ul><ul><li>bacteria </li></ul></ul><ul><ul><li>lichens & mosses </li><...
Succession  from mosses & lichens = pioneer species to shrubs & trees
Climax forest <ul><li>solar energy levels </li></ul><ul><li>temperature </li></ul><ul><li>rainfall </li></ul><ul><li>ferti...
Ecosystems Chapter 54
Ecosystem  <ul><li>Community of organisms plus the abiotic factors that exist  in a certain area </li></ul>
Nutrient cycling Decomposition connects all  trophic levels
Carbon cycle CO 2  in atmosphere Diffusion Respiration Photosynthesis Photosynthesis Plants and algae Plants Animals Indus...
Nitrogen cycle Birds Herbivores Plants Amino acids Carnivores Atmospheric nitrogen Loss to deep sediments Fish Plankton  w...
Phosphorus cycle Loss to deep sediment Rocks and minerals Soluble soil phosphate Plants and algae Plants  Urine Land  anim...
What have we done!
Impact of ecology as a science <ul><li>E cology provides a scientific context for evaluating  environmental issues </li></...
Barry Commoner’s Laws of Ecology <ul><li>Everything is connected to everything else </li></ul><ul><li>Everything must go s...
Acid Precipitation <ul><li>power plants </li></ul><ul><li>industry </li></ul><ul><li>transportation </li></ul><ul><li>nitr...
Acid rain
BioMagnification
BioMagnification <ul><li>PCBs </li></ul><ul><ul><li>General Electric manufacturing plant on Hudson River </li></ul></ul><u...
Carbon Dioxide Global Warming
CO 2 NO x methane
Ozone Depletion protects from  UV rays
Ozone Depletion
Bad ozone vs. good ozone
Ozone Depletion <ul><li>Loss of ozone above Antarctica </li></ul>
Deforestation <ul><li>Loss of habitat </li></ul><ul><li>Loss of biodiversity </li></ul>
Loss of Diversity <ul><li>3 levels of biodiversity </li></ul><ul><ul><li>ecosystem diversity </li></ul></ul><ul><ul><li>mi...
Driven to extinction
Introduced species <ul><li>Introduced species </li></ul><ul><ul><li>transplanted populations grow exponentially in new are...
Zebra mus sel ~2 months
Purple loosestrife
Purple loosestrife <ul><li>Non-native species out-compete native species  </li></ul><ul><ul><li>lack of competitors & pred...
Overexploitation North Atlantic  bluefin tuna
Fragmented habitat
Biodiversity hot spots
Restoration projects
Think Globally, Act Locally
Upcoming SlideShare
Loading in …5
×

64 ecology2005

805 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
805
On SlideShare
0
From Embeds
0
Number of Embeds
12
Actions
Shares
0
Downloads
37
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • The J–shaped curve of exponential growth is characteristic of some populations that are introduced into a new or unfilled environment or whose numbers have been drastically reduced by a catastrophic event and are rebounding. The graph illustrates the exponential population growth that occurred in the population of elephants in Kruger National Park, South Africa, after they were protected from hunting. After approximately 60 years of exponential growth, the large number of elephants had caused enough damage to the park vegetation that a collapse in the elephant food supply was likely, leading to an end to population growth through starvation. To protect other species and the park ecosystem before that happened, park managers began limiting the elephant population by using birth control and exporting elephants to other countries.
  • The population doubled to 1 billion within the next two centuries, doubled again to 2 billion between 1850 and 1930, and doubled still again by 1975 to more than 4 billion. The global population now numbers over 6 billion people and is increasing by about 73 million each year. The population grows by approximately 201,000 people each day, the equivalent of adding a city the size of Amarillo, Texas, or Madison, Wisconsin. Every week the population increases by the size of San Antonio, Milwaukee, or Indianapolis. It takes only four years for world population growth to add the equivalent of another United States. Population ecologists predict a population of 7.3–8.4 billion people on Earth by the year 2025.
  • We consume more than just food: water, energy, space/habitat
  • 64 ecology2005

    1. 1. Bright blue marble floating in space Ecology Chapter 50 Our first power point! Aren't you excited??
    2. 2. <ul><li>Ecology </li></ul><ul><ul><li>The scientific study of the interactions between organisms and the environment. </li></ul></ul><ul><li>It is these interactions that determine the distribution of organisms across an area as well as their abundance in that area </li></ul>Distribution and abundance of the red kangaroo in Australia
    3. 3. Everything links to evolution <ul><li>Ecology & Evolution </li></ul><ul><ul><li>Darwin proposed that environmental factors interacting with variation within populations could cause evolutionary change. </li></ul></ul><ul><li>Think about it... </li></ul><ul><ul><li>If a fox eats a rabbit (predator-prey relationship) then the gene pool of that rabbit population is altered by the loss of that rabbits alleles (microevolution) </li></ul></ul>
    4. 4. All Environments Include: <ul><li>Abiotic factors </li></ul><ul><ul><li>non-living chemical & physical factors </li></ul></ul><ul><ul><ul><li>temperature </li></ul></ul></ul><ul><ul><ul><li>light </li></ul></ul></ul><ul><ul><ul><li>water </li></ul></ul></ul><ul><ul><ul><li>nutrients </li></ul></ul></ul><ul><li>Biotic factors </li></ul><ul><ul><li>living components </li></ul></ul><ul><ul><ul><li>animals </li></ul></ul></ul><ul><ul><ul><li>plants </li></ul></ul></ul>Both biotic and abiotic factors help determine the distribution and abundance of a species
    5. 5. Levels of ecology <ul><li>Biosphere – the broadest unit of study </li></ul><ul><ul><li>Ecosystems </li></ul></ul><ul><ul><ul><li>Communities </li></ul></ul></ul><ul><ul><ul><ul><li>Populations </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Organisms – the smallest unit of study </li></ul></ul></ul></ul></ul>
    6. 6. Dispersal and Distribution <ul><li>How is distribution of organisms limited? </li></ul><ul><ul><li>Does an organisms environment play a part? </li></ul></ul><ul><ul><li>Of course it does! </li></ul></ul>
    7. 7. Earth’s biomes
    8. 8. Marine intertidal coral reef benthos
    9. 9. Tropical rainforest distribution : equatorial precipitation : very wet temperature : always warm characteristics : many plants & animals, thin soil
    10. 10. Savanna distribution : equatorial precipitation : seasonal, dry season/wet season temperature : always warm characteristics : fire-adapted, drought tolerant plants; herbivores; fertile soil
    11. 11. Desert distribution : 30°N & S latitude band precipitation : almost temperature : variable daily & seasonally, hot & cold characteristics : sparse vegetation & animals, cacti, succulents, drought tolerant, reptiles, insects, rodents, birds
    12. 12. Temperate Grassland distribution : mid-latitudes, mid-continents precipitation : seasonal, dry season/wet season temperature : cold winters/hot summers characteristics : prairie grasses, fire-adapted, drought tolerant plants; many herbivores; deep, fertile soil
    13. 13. Temperate Deciduous Forest distribution : mid-latitude, northern hemisphere precipitation : adequate, summer rains, winter snow temperature : moderate warm summer/cool winter characteristics : many mammals, insects, birds, etc.; deciduous trees; fertile soils
    14. 14. Coniferous Forest (Taiga) distribution : high-latitude, northern hemisphere precipitation : adequate to dry (temperate rain forest on coast) temperature : cool year round characteristics : conifers; diverse mammals, birds, insects, etc.
    15. 15. Arctic Tundra distribution : arctic, high-latitude, northern hemisphere precipitation : dry temperature : cold year round characteristics : permafrost, lichens & mosses, migrating animals & resident herbivores
    16. 16. Alpine Tundra distribution : high elevation at all latitudes precipitation : dry temperature : cold year round characteristics : permafrost, lichens, mosses, grasses; migrating animals & resident herbivores
    17. 17. Population Ecology Chapter 52
    18. 18. Changes to population size <ul><li>Adding & removing individuals from a population </li></ul><ul><ul><li>birth </li></ul></ul><ul><ul><li>death </li></ul></ul><ul><ul><li>immigration </li></ul></ul><ul><ul><li>emigration </li></ul></ul>
    19. 19. Growth rate <ul><li>Exponential growth </li></ul><ul><ul><li>characteristic of a population without limiting factors </li></ul></ul><ul><ul><ul><li>ex. introduced to a new environment </li></ul></ul></ul>African elephant protected from hunting Whooping crane coming back from near extinction
    20. 20. Carrying capacity <ul><li>Can populations continue to grow exponentially? </li></ul><ul><ul><li>of course NOT! </li></ul></ul><ul><ul><li>what sets limit? </li></ul></ul><ul><ul><ul><li>resources, predators, parasites </li></ul></ul></ul><ul><li>Carrying Capacity (K) </li></ul><ul><ul><li>maximum population size that environment can support with no degradation of habitat </li></ul></ul><ul><ul><ul><li>not fixed; varies with changes in resources </li></ul></ul></ul>
    21. 21. Model of growth <ul><li>Decrease in rate of growth as reach carrying capacity </li></ul>
    22. 22. Different life strategies <ul><li>K-selection </li></ul><ul><li>r-selection </li></ul>K-selection r-selection mortality constant
    23. 23. Reproductive strategies <ul><li>K-strategy </li></ul><ul><ul><li>have few offspring & invest a lot of energy in raising them to reproductive age </li></ul></ul><ul><ul><ul><li>primates </li></ul></ul></ul><ul><ul><ul><li>coconut </li></ul></ul></ul><ul><li>r-strategy </li></ul><ul><ul><li>have many offspring & invest little in their survival </li></ul></ul><ul><ul><ul><li>insects </li></ul></ul></ul><ul><ul><ul><li>dandelion & other weeds </li></ul></ul></ul>
    24. 24. Predator – prey interactions <ul><li>Population cycles </li></ul>
    25. 25. Age structure <ul><li>Relative number of individuals of each age </li></ul>What do the data imply about population growth in these countries?
    26. 26. Human population <ul><li>What factors have contributed to this exponential growth pattern? </li></ul>1650  500 million 2005  6 billion Is the human population reaching carrying capacity?
    27. 27. Community Ecology Chapter 53
    28. 28. Inter-species interactions <ul><li>Symbiotic interactions </li></ul><ul><ul><li>competition (-/-) </li></ul></ul><ul><ul><ul><li>compete for limited resource </li></ul></ul></ul><ul><ul><ul><li>2 species cannot coexist in a community if their niches are identical </li></ul></ul></ul><ul><ul><li>predation / parasitism (-/+) </li></ul></ul><ul><ul><li>mutualism (+/+) </li></ul></ul><ul><ul><ul><li>lichens (algae & fungus) </li></ul></ul></ul><ul><ul><li>commensalism (+/0) </li></ul></ul><ul><ul><ul><li>barnacles attached to whale </li></ul></ul></ul>
    29. 29. commensalism (+/0) (+/+) mutualism predation (+/-) competition (-/-)
    30. 30. Niche <ul><li>An organism’s niche is its ecological role </li></ul><ul><li>habitat = address , niche = job </li></ul>Resource partitioning
    31. 31. Niche & competition <ul><li>Competitive Exclusion </li></ul><ul><ul><li>No two similar species can occupy the same niche at the same time </li></ul></ul>
    32. 32. Predation drives evolution <ul><li>Predators adaptations </li></ul><ul><ul><li>locate & subdue prey </li></ul></ul><ul><li>Prey adaptations </li></ul><ul><ul><li>elude & defend </li></ul></ul>spines, thorns, toxins horns, speed, coloration
    33. 33. Trophic structure <ul><li>Food chains </li></ul><ul><ul><li>feeding relationships </li></ul></ul><ul><ul><li>food chain usually 4 or 5 links = trophic levels </li></ul></ul><ul><ul><li>length of food chain limited by inefficiency of energy transfer </li></ul></ul>
    34. 34. Energy transfer <ul><li>Energy in </li></ul><ul><ul><li>from the Sun </li></ul></ul><ul><ul><li>captured by autotrophs = producers (plants) </li></ul></ul><ul><li>Energy through </li></ul><ul><ul><li>food chain </li></ul></ul><ul><ul><ul><li>transfer of energy from autotrophs to heterotrophs (herbivores to carnivores) </li></ul></ul></ul><ul><ul><ul><li>heterotrophs = consumers </li></ul></ul></ul><ul><ul><ul><ul><li>herbivores </li></ul></ul></ul></ul><ul><ul><ul><ul><li>carnivores </li></ul></ul></ul></ul>
    35. 35. Energy inefficiency incomplete digestion metabolism
    36. 36. Pyramids of production <ul><li>represent the loss of energy from a food chain </li></ul><ul><ul><li>how much energy is turned into biomass </li></ul></ul>
    37. 37. Food webs <ul><li>Food chains are hooked together into food webs </li></ul><ul><li>Who eats whom? </li></ul><ul><ul><li>a species may weave into web at more than 1 trophic level </li></ul></ul><ul><ul><ul><li>bears </li></ul></ul></ul><ul><ul><ul><li>“ there’s always a bigger fish” </li></ul></ul></ul>What limits the length of a food chain?
    38. 38. Implications <ul><li>Dynamics of energy through ecosystems have important implications for human populations </li></ul><ul><ul><li>what food would be more ecologically sound? </li></ul></ul>
    39. 39. Disturbances <ul><li>Most communities are in a state of change due to disturbances </li></ul><ul><ul><li>fire, weather, human activities, etc. </li></ul></ul><ul><ul><li>not all are negative </li></ul></ul>
    40. 40. Disturbances <ul><li>Disturbances are often necessary for community development & survival </li></ul>
    41. 41. Ecological cycle <ul><li>fire as part of a natural community cycle </li></ul>
    42. 42. Ecological succession <ul><li>The sequence of community changes after a disturbance </li></ul><ul><ul><li>transition in species composition over ecological time </li></ul></ul><ul><ul><ul><li>years or decades </li></ul></ul></ul>Mt. St. Helens
    43. 43. Succession <ul><li>From bare soil, then… </li></ul><ul><ul><li>bacteria </li></ul></ul><ul><ul><li>lichens & mosses </li></ul></ul><ul><ul><li>grasses </li></ul></ul><ul><ul><li>shrubs </li></ul></ul><ul><ul><li>trees </li></ul></ul>make soil { Change in species mix over time
    44. 44. Succession from mosses & lichens = pioneer species to shrubs & trees
    45. 45. Climax forest <ul><li>solar energy levels </li></ul><ul><li>temperature </li></ul><ul><li>rainfall </li></ul><ul><li>fertility & depth of soil </li></ul>The species mix of climax forest is dependent on the abiotic factors of the region birch, beech, maple, hemlock
    46. 46. Ecosystems Chapter 54
    47. 47. Ecosystem <ul><li>Community of organisms plus the abiotic factors that exist in a certain area </li></ul>
    48. 48. Nutrient cycling Decomposition connects all trophic levels
    49. 49. Carbon cycle CO 2 in atmosphere Diffusion Respiration Photosynthesis Photosynthesis Plants and algae Plants Animals Industry and home Combustion of fuels Animals Carbonates in sediment Bicarbonates Deposition of dead material Deposition of dead material Fossil fuels (oil, gas, coal) Dissolved CO2
    50. 50. Nitrogen cycle Birds Herbivores Plants Amino acids Carnivores Atmospheric nitrogen Loss to deep sediments Fish Plankton with nitrogen- fixing bacteria Nitrogen- fixing bacteria (plant roots) Nitrogen- fixing bacteria (soil) Denitrifying bacteria Death, excretion, feces Nitrifying bacteria Soil nitrates Excretion Decomposing bacteria Ammonifying bacteria
    51. 51. Phosphorus cycle Loss to deep sediment Rocks and minerals Soluble soil phosphate Plants and algae Plants Urine Land animals Precipitates Aquatic animals Animal tissue and feces Animal tissue and feces Decomposers (bacteria and fungi) Decomposers (bacteria and fungi) Phosphates in solution Loss in drainage
    52. 52. What have we done!
    53. 53. Impact of ecology as a science <ul><li>E cology provides a scientific context for evaluating environmental issues </li></ul><ul><ul><li>Rachel Carson , in 1962, in her book, Silent Spring , warned that use of pesticides such as DDT was causing population declines in many non-target organisms </li></ul></ul>
    54. 54. Barry Commoner’s Laws of Ecology <ul><li>Everything is connected to everything else </li></ul><ul><li>Everything must go somewhere </li></ul><ul><ul><li>there is no such place as “ away ” </li></ul></ul><ul><li>Nature knows best </li></ul><ul><li>There is no such thing as a free lunch </li></ul>Laws of Unintended Consequences
    55. 55. Acid Precipitation <ul><li>power plants </li></ul><ul><li>industry </li></ul><ul><li>transportation </li></ul><ul><li>nitrogen oxides </li></ul><ul><li>sulfur dioxide </li></ul>
    56. 56. Acid rain
    57. 57. BioMagnification
    58. 58. BioMagnification <ul><li>PCBs </li></ul><ul><ul><li>General Electric manufacturing plant on Hudson River </li></ul></ul><ul><ul><li>PCBs in sediment </li></ul></ul><ul><ul><li>striped bass nesting areas </li></ul></ul>
    59. 59. Carbon Dioxide Global Warming
    60. 60. CO 2 NO x methane
    61. 61. Ozone Depletion protects from UV rays
    62. 62. Ozone Depletion
    63. 63. Bad ozone vs. good ozone
    64. 64. Ozone Depletion <ul><li>Loss of ozone above Antarctica </li></ul>
    65. 65. Deforestation <ul><li>Loss of habitat </li></ul><ul><li>Loss of biodiversity </li></ul>
    66. 66. Loss of Diversity <ul><li>3 levels of biodiversity </li></ul><ul><ul><li>ecosystem diversity </li></ul></ul><ul><ul><li>mix of species in community </li></ul></ul><ul><ul><li>genetic diversity within population </li></ul></ul><ul><li>All decreased by human activity </li></ul><ul><ul><li>loss of genetic diversity </li></ul></ul><ul><ul><li>loss of biodiversity </li></ul></ul>
    67. 67. Driven to extinction
    68. 68. Introduced species <ul><li>Introduced species </li></ul><ul><ul><li>transplanted populations grow exponentially in new area </li></ul></ul><ul><ul><li>non-native species out-compete native species </li></ul></ul><ul><ul><ul><li>lack of competitors & predators </li></ul></ul></ul><ul><ul><ul><li>reduce diversity </li></ul></ul></ul><ul><ul><li>examples </li></ul></ul><ul><ul><ul><li>African honeybee </li></ul></ul></ul><ul><ul><ul><li>gypsy moth </li></ul></ul></ul><ul><ul><ul><li>zebra mussel </li></ul></ul></ul><ul><ul><ul><li>purple loosestrife </li></ul></ul></ul>kudzu gypsy moth
    69. 69. Zebra mus sel ~2 months
    70. 70. Purple loosestrife
    71. 71. Purple loosestrife <ul><li>Non-native species out-compete native species </li></ul><ul><ul><li>lack of competitors & predators </li></ul></ul><ul><ul><li>reducing diversity </li></ul></ul><ul><ul><li>causing loss of food & nesting sites for animals </li></ul></ul>1968 1978
    72. 72. Overexploitation North Atlantic bluefin tuna
    73. 73. Fragmented habitat
    74. 74. Biodiversity hot spots
    75. 75. Restoration projects
    76. 76. Think Globally, Act Locally

    ×