SlideShare a Scribd company logo
1 of 25
GASES
GASES
Kinetic Molecular Theory of Gases
-The volume of an individual gas molecule is negligible compared to the volume of the
container holding the gas. This means that individual gas molecules, with virtually no
volume of their own, are extremely far apart and most of the container
is “empty” space
-There are neither attractive nor repulsive forces between gas molecules
-Gas molecules have high translational energy. They move randomly in all directions, in
straight lines
-When gas molecules collide with each other or with a container wall, the collisions are
perfectly elastic. This means that when gas molecules collide, somewhat like billiard
balls, there is no loss of kinetic energy
-The average kinetic energy of gas molecules is directly related to the temperature. The
greater the temperature, the greater the average kinetic energy.
GASES
Gas molecules have high translational energy. They move randomly in
all directions, in straight lines
GASES
Pressure
Volume
Temperature
ALL related to one
another.
If you change one,
you change the
other.
GASES: Pressure
Pressure (P) is measured in kilopascals (kPa)
Pressure = Force
Area
The unit Pa is the same as N/m2
For example:
The standard atmospheric pressure at 0ºC is 101.3kPa
How to measure pressure in pascals (Pa)?
Converting common units: 760 mm Hg = 760 Torr = 1 atm = 101.3 kPa
GASES: Volume
Volume (V) is measured in Litres (L)
GASES: Temperature
Temperature (T) is measured in Kelvin (K)
These are the same degrees as ºC, but:
0ºC = 273.15K
To convert Celcius to Kelvin,
use the following formula:
T (in K) = ºC + 273
GASES: Relationships
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
Charles’ Law: Volume and temperature are directly proportional
Vi = Vf
Ti Tf
Gay-Lussac’s Law: Pressure and temperature are directly proportional
Pi = Pf
Ti Tf
(assuming constant temperature)
(assuming constant pressure)
(assuming constant volume)
GASES: Relationships
P
1
V
If a sample of gas
at initial conditions
has an increase of
pressure applied
to it, its volume
decreases
proportionally
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
GASES: Relationships
Boyle’s Law: Pressure and volume are inversely proportional
PiVi = PfVf
GASES: Relationships
Charles’ Law: Volume and temperature are directly proportional
Vi = Vf
Ti Tf
GASES: Relationships
Gay-Lussac’s Law: Pressure and temperature are directly proportional
Pi = Pf
Ti Tf
GASES: Relationships
COMBINED GAS LAW
PiVi = PfVf
Ti Tf
Since pressure, volume, and temperature are all related, they
can all be combined together:
GASES
STANDARD TEMPERATURE and PRESSURE (STP)
Pressure = 101.3 kPa Temperature = 273K (0°C)
STANDARD AMBIENT TEMPERATURE and PRESSURE (SATP)
Pressure = 100 kPa Temperature = 298K (25°C)
One of two conditions will be used for gas calculations:
GASES: Calculations
Sandra is having a birthday party on a mild winter’s day. The weather
changes and a higher pressure (103.0 kPa) cold front (-25°C) rushes into
town. The original air temperature was -2°C and the pressure was 100.8
kPa. What will happen to the volume of the 4.2 L balloons that were tied to
the front of the house?
Given:
Pi = 100.8 kPa Pf = 103.0 kPa
Vi = 4.2 L Vf = ?
Ti = -2°C = 271K Tf = -25°C = 248K
PiVi = PfVf
Ti Tf
(100.8 kPa) (4.2 L) = (103.0 kPa) Vf
(271 K) (248K)
Vf = 3.76 L
Therefore the volume of the balloons will decrease to 3.8 L
GASES: Calculations
Practice: Page 457 #19-21
GASES: Dalton’s Law
Dalton’s Law of Partial Pressures:
The total pressure of a mixture of gases is the sum of
the pressures of each of the individual gases
Ptotal = P1 + P2 + P3 + P4 + P5 +… + Pn
Practice: Page 460 #22-23
GASES: Ideal Gas Law
Gay-Lussac:
Mole ratios are the same as volume ratios
Avogadro’s Hypothesis:
Equal volumes of all ideal gases at the same
temperature and pressure contain the same number
of molecules
GASES: Ideal Gas Law
For example:
2H2(g) + O2(g)  2H2O(g)
2 mol + 1 mol  2 mol
2 volumes + 1 volume  2 volume
So if you react 2L of hydrogen gas with 1L of oxygen
gas, you will get…
2L of water vapour!!!
GASES: Ideal Gas Law
Ideal Gas Law formula: (Most IMPORTANT formula)
PV = nRT
Pressure (kPa)
Volume (L)
Number of moles (mol)
Universal gas constant
8.314 kPa∙L
mol∙K
Temperature (K)
GASES: CALCULATIONS
Sulfuric acid reacts with iron metal to produce gas and an iron
compound. What volume of gas is produced when excess sulfuric
acid reacts with 40.0g of iron at 18°C and 100.3 kPa?
Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa
STEP 1: Write the balanced chemical equation
Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq)
n = m/M
= (40.0g) / (55.85g/mol)
= 0.716 mol Fe
STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!)
1 mol H2 = x
1 mol Fe 0.716 mol Fe
x = 0.716 mol H2
STEP 3: Use the ideal gas law to solve for the volume
GASES: CALCULATIONS
Sulfuric acid reacts with iron metal to produce gas and an iron
compound. What volume of gas is produced when excess sulfuric
acid reacts with 40.0g of iron at 18°C and 100.3 kPa?
Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa
STEP 3: Use the ideal gas law to solve for the volume
PV = nRT
V = nRT
P
= (0.716 mol x 8.314 kPa∙L/mol∙K x 291 K)
(100.3 kPa)
= 17.3 L
Therefore 17.3 L of hydrogen gas are produced
Practice: Page 506 #30-34
GASES: CALCULATIONS
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen gas. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa
?
Pressure of water vapour at 28°C = 3.78 kPa
(from page 596, Table 1)
Ptotal = PH2O + PH2
(101.8 kPa) = 3.78 kPa + PH2
Dalton’s Law of Partial Pressures
PH2
= 98.0 kPa
GASES: CALCULATIONS
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen has. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa
STEP 1: Write the balanced chemical equation
Mg(s) + 2HCl(aq)  MgCl2(ag) + H2(g)
n = m/M
= (0.15g) / (24.31g/mol)
= 0.0062 mol
STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!)
1 mol H2 = x
1 mol Mg 0.0062 mol Mg
x = 0.0062 mol H2
STEP 3: Use the ideal gas law to solve for the volume
GASES: CALCULATIONS
STEP 3: Use the ideal gas law to solve for the volume
PV = nRT
V = nRT
P
= (0.0062 mol x 8.314 kPa∙L/mol∙K x 301 K)
(98.0 kPa)
= 0.16 L
Therefore the student collects 0.16 L of dry hydrogen
Practice: Page 511 #37-39
A student reacts magnesium with excess dilute hydrochloric acid to
produce hydrogen gas. She uses 0.15g of magnesium metal. What
volume of dry hydrogen does she collect over water at 28°C and 101.8
kPA?
Given: mMg= 0.15g T = 28.0°C = 301K P = 101.8 kPa

More Related Content

What's hot

Thermodynamic system
Thermodynamic systemThermodynamic system
Thermodynamic system
ZTE Nepal
 
The kinetic theory of gases 1
The kinetic theory of gases 1The kinetic theory of gases 1
The kinetic theory of gases 1
Ashwani Kumar
 
Conservation Of Energy
Conservation Of EnergyConservation Of Energy
Conservation Of Energy
itutor
 

What's hot (20)

Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
 
Thermodynamic system
Thermodynamic systemThermodynamic system
Thermodynamic system
 
Thermodynamics ppt
Thermodynamics pptThermodynamics ppt
Thermodynamics ppt
 
Thermodynamics
Thermodynamics Thermodynamics
Thermodynamics
 
Ideal Gas Law
Ideal Gas LawIdeal Gas Law
Ideal Gas Law
 
02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law02 part1 thermo laws zeroth law
02 part1 thermo laws zeroth law
 
Thermodynamics and Heat Transfer
Thermodynamics and Heat TransferThermodynamics and Heat Transfer
Thermodynamics and Heat Transfer
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
The kinetic theory of gases 1
The kinetic theory of gases 1The kinetic theory of gases 1
The kinetic theory of gases 1
 
Vander waals equation
Vander waals equationVander waals equation
Vander waals equation
 
Engineering Thermodynamics Lecture Notes
Engineering Thermodynamics Lecture NotesEngineering Thermodynamics Lecture Notes
Engineering Thermodynamics Lecture Notes
 
1. Energy Transfer.pptx
1. Energy Transfer.pptx1. Energy Transfer.pptx
1. Energy Transfer.pptx
 
First law of thermodynamics
First law of thermodynamicsFirst law of thermodynamics
First law of thermodynamics
 
Conservation Of Energy
Conservation Of EnergyConservation Of Energy
Conservation Of Energy
 
Some basic terms in thermodynamics ( introductory terms) (other ppt can also ...
Some basic terms in thermodynamics ( introductory terms) (other ppt can also ...Some basic terms in thermodynamics ( introductory terms) (other ppt can also ...
Some basic terms in thermodynamics ( introductory terms) (other ppt can also ...
 
Laws Of Thermodynamics
Laws Of ThermodynamicsLaws Of Thermodynamics
Laws Of Thermodynamics
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Gibbs Free Energy.ppt
Gibbs Free Energy.pptGibbs Free Energy.ppt
Gibbs Free Energy.ppt
 

Viewers also liked (15)

22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
Mole Introduction PPT
Mole Introduction PPTMole Introduction PPT
Mole Introduction PPT
 
Chemistry - moles
Chemistry - molesChemistry - moles
Chemistry - moles
 
The gas laws complete
The gas laws completeThe gas laws complete
The gas laws complete
 
Tang 02 lewis acids & bases 2
Tang 02   lewis acids & bases 2Tang 02   lewis acids & bases 2
Tang 02 lewis acids & bases 2
 
23 gases
23 gases23 gases
23 gases
 
Tang 01 organic chemistry and alkanes
Tang 01   organic chemistry and alkanesTang 01   organic chemistry and alkanes
Tang 01 organic chemistry and alkanes
 
The Mole
The MoleThe Mole
The Mole
 
17 stoichiometry
17 stoichiometry17 stoichiometry
17 stoichiometry
 
Tang 04 periodic trends
Tang 04   periodic trendsTang 04   periodic trends
Tang 04 periodic trends
 
Gas laws
Gas lawsGas laws
Gas laws
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
The mole concept
The mole conceptThe mole concept
The mole concept
 
The mole concept
The mole conceptThe mole concept
The mole concept
 
How Big Is A Mole
How Big Is A MoleHow Big Is A Mole
How Big Is A Mole
 

Similar to 23 gases

Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
mikeebio1
 
Chapter 5 gases reduced1
Chapter 5  gases reduced1Chapter 5  gases reduced1
Chapter 5 gases reduced1
mtsaeed03
 
Chapter 5 gases reduced1
Chapter 5  gases reduced1Chapter 5  gases reduced1
Chapter 5 gases reduced1
mtsaeed03
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
jinprix
 
States of matter
States of matterStates of matter
States of matter
Hoshi94
 
Chemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 GasesChemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 Gases
Sam Richard
 
Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5
tdean1
 

Similar to 23 gases (20)

Chapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).pptChapter 14 Gas Laws ppt 2017 good (1).ppt
Chapter 14 Gas Laws ppt 2017 good (1).ppt
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Ch5 Gases
Ch5 GasesCh5 Gases
Ch5 Gases
 
Chem unit 12 presentation
Chem unit 12 presentationChem unit 12 presentation
Chem unit 12 presentation
 
Gas
GasGas
Gas
 
Chapter 10 Lecture- Gases
Chapter 10 Lecture- GasesChapter 10 Lecture- Gases
Chapter 10 Lecture- Gases
 
Chapter 5 gases reduced1
Chapter 5  gases reduced1Chapter 5  gases reduced1
Chapter 5 gases reduced1
 
Chapter 5 gases reduced1
Chapter 5  gases reduced1Chapter 5  gases reduced1
Chapter 5 gases reduced1
 
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].pptG10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
G10_Science_Q4-_Week_1-2-Constant_Temp_of_Gas[1].ppt
 
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.pptG10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
G10 Science Q4- Week 1-2-Constant Temp of Gas.ppt
 
States of matter
States of matterStates of matter
States of matter
 
Kinetic molecular theory
Kinetic molecular theoryKinetic molecular theory
Kinetic molecular theory
 
Chemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 GasesChemistry- JIB Topic 6 Gases
Chemistry- JIB Topic 6 Gases
 
Unit 4: Behavior of Gases
Unit 4: Behavior of GasesUnit 4: Behavior of Gases
Unit 4: Behavior of Gases
 
Gas Laws
Gas LawsGas Laws
Gas Laws
 
gas_laws.ppt
gas_laws.pptgas_laws.ppt
gas_laws.ppt
 
gas_laws.ppt
gas_laws.pptgas_laws.ppt
gas_laws.ppt
 
3.2 gas laws
3.2 gas laws3.2 gas laws
3.2 gas laws
 
Chem 101 week 12 ch 5
Chem 101 week 12 ch 5Chem 101 week 12 ch 5
Chem 101 week 12 ch 5
 
ppt-chem-gas-laws.pptx
ppt-chem-gas-laws.pptxppt-chem-gas-laws.pptx
ppt-chem-gas-laws.pptx
 

More from mrtangextrahelp

More from mrtangextrahelp (20)

Tang 02 wave quantum mechanic model
Tang 02   wave quantum mechanic modelTang 02   wave quantum mechanic model
Tang 02 wave quantum mechanic model
 
04 periodic trends v2
04 periodic trends v204 periodic trends v2
04 periodic trends v2
 
22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
22 solution stoichiometry new
22 solution stoichiometry new22 solution stoichiometry new
22 solution stoichiometry new
 
21 water treatment
21 water treatment21 water treatment
21 water treatment
 
20 concentration of solutions
20 concentration of solutions20 concentration of solutions
20 concentration of solutions
 
22 acids + bases
22 acids + bases22 acids + bases
22 acids + bases
 
19 solutions and solubility
19 solutions and solubility19 solutions and solubility
19 solutions and solubility
 
18 percentage yield
18 percentage yield18 percentage yield
18 percentage yield
 
17 stoichiometry
17 stoichiometry17 stoichiometry
17 stoichiometry
 
14 the mole!!!
14 the mole!!!14 the mole!!!
14 the mole!!!
 
01 significant digits
01 significant digits01 significant digits
01 significant digits
 
13 nuclear reactions
13 nuclear reactions13 nuclear reactions
13 nuclear reactions
 
13 isotopes
13   isotopes13   isotopes
13 isotopes
 
12 types of chemical reactions
12 types of chemical reactions12 types of chemical reactions
12 types of chemical reactions
 
11 balancing chemical equations
11 balancing chemical equations11 balancing chemical equations
11 balancing chemical equations
 
10 naming and formula writing 2012
10 naming and formula writing 201210 naming and formula writing 2012
10 naming and formula writing 2012
 
09 polarity 2016
09 polarity 201609 polarity 2016
09 polarity 2016
 
08 lewis dot diagrams to 3 d diagrams
08 lewis dot diagrams to 3 d diagrams08 lewis dot diagrams to 3 d diagrams
08 lewis dot diagrams to 3 d diagrams
 
07 lewis dot diagrams
07 lewis dot diagrams07 lewis dot diagrams
07 lewis dot diagrams
 

Recently uploaded

Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
GOWTHAMIM22
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Sérgio Sacani
 

Recently uploaded (20)

Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyanPlasma proteins_ Dr.Muralinath_Dr.c. kalyan
Plasma proteins_ Dr.Muralinath_Dr.c. kalyan
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
Factor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary GlandFactor Causing low production and physiology of mamary Gland
Factor Causing low production and physiology of mamary Gland
 
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
Alternative method of dissolution in-vitro in-vivo correlation and dissolutio...
 
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
Virulence Analysis of Citrus canker caused by Xanthomonas axonopodis pv. citr...
 
Developing Distributed High-performance Computing Capabilities of an Open Sci...
Developing Distributed High-performance Computing Capabilities of an Open Sci...Developing Distributed High-performance Computing Capabilities of an Open Sci...
Developing Distributed High-performance Computing Capabilities of an Open Sci...
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
 
TEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdfTEST BANK for Organic Chemistry 6th Edition.pdf
TEST BANK for Organic Chemistry 6th Edition.pdf
 
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
VILLAGE ATTACHMENT For rural agriculture  PPT.pptxVILLAGE ATTACHMENT For rural agriculture  PPT.pptx
VILLAGE ATTACHMENT For rural agriculture PPT.pptx
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
family therapy psychotherapy types .pdf
family therapy psychotherapy types  .pdffamily therapy psychotherapy types  .pdf
family therapy psychotherapy types .pdf
 
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdfMODERN PHYSICS_REPORTING_QUANTA_.....pdf
MODERN PHYSICS_REPORTING_QUANTA_.....pdf
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
NuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdfNuGOweek 2024 programme final FLYER short.pdf
NuGOweek 2024 programme final FLYER short.pdf
 
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday LifeGBSN - Microbiology (Unit 7) Microbiology in Everyday Life
GBSN - Microbiology (Unit 7) Microbiology in Everyday Life
 
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
Exomoons & Exorings with the Habitable Worlds Observatory I: On the Detection...
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 
Lubrication System in forced feed system
Lubrication System in forced feed systemLubrication System in forced feed system
Lubrication System in forced feed system
 
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
MSCII_              FCT UNIT 5 TOXICOLOGY.pdfMSCII_              FCT UNIT 5 TOXICOLOGY.pdf
MSCII_ FCT UNIT 5 TOXICOLOGY.pdf
 

23 gases

  • 2. GASES Kinetic Molecular Theory of Gases -The volume of an individual gas molecule is negligible compared to the volume of the container holding the gas. This means that individual gas molecules, with virtually no volume of their own, are extremely far apart and most of the container is “empty” space -There are neither attractive nor repulsive forces between gas molecules -Gas molecules have high translational energy. They move randomly in all directions, in straight lines -When gas molecules collide with each other or with a container wall, the collisions are perfectly elastic. This means that when gas molecules collide, somewhat like billiard balls, there is no loss of kinetic energy -The average kinetic energy of gas molecules is directly related to the temperature. The greater the temperature, the greater the average kinetic energy.
  • 3. GASES Gas molecules have high translational energy. They move randomly in all directions, in straight lines
  • 4. GASES Pressure Volume Temperature ALL related to one another. If you change one, you change the other.
  • 5. GASES: Pressure Pressure (P) is measured in kilopascals (kPa) Pressure = Force Area The unit Pa is the same as N/m2 For example: The standard atmospheric pressure at 0ºC is 101.3kPa How to measure pressure in pascals (Pa)? Converting common units: 760 mm Hg = 760 Torr = 1 atm = 101.3 kPa
  • 6. GASES: Volume Volume (V) is measured in Litres (L)
  • 7. GASES: Temperature Temperature (T) is measured in Kelvin (K) These are the same degrees as ºC, but: 0ºC = 273.15K To convert Celcius to Kelvin, use the following formula: T (in K) = ºC + 273
  • 8. GASES: Relationships Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf Charles’ Law: Volume and temperature are directly proportional Vi = Vf Ti Tf Gay-Lussac’s Law: Pressure and temperature are directly proportional Pi = Pf Ti Tf (assuming constant temperature) (assuming constant pressure) (assuming constant volume)
  • 9. GASES: Relationships P 1 V If a sample of gas at initial conditions has an increase of pressure applied to it, its volume decreases proportionally Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf
  • 10. GASES: Relationships Boyle’s Law: Pressure and volume are inversely proportional PiVi = PfVf
  • 11. GASES: Relationships Charles’ Law: Volume and temperature are directly proportional Vi = Vf Ti Tf
  • 12. GASES: Relationships Gay-Lussac’s Law: Pressure and temperature are directly proportional Pi = Pf Ti Tf
  • 13. GASES: Relationships COMBINED GAS LAW PiVi = PfVf Ti Tf Since pressure, volume, and temperature are all related, they can all be combined together:
  • 14. GASES STANDARD TEMPERATURE and PRESSURE (STP) Pressure = 101.3 kPa Temperature = 273K (0°C) STANDARD AMBIENT TEMPERATURE and PRESSURE (SATP) Pressure = 100 kPa Temperature = 298K (25°C) One of two conditions will be used for gas calculations:
  • 15. GASES: Calculations Sandra is having a birthday party on a mild winter’s day. The weather changes and a higher pressure (103.0 kPa) cold front (-25°C) rushes into town. The original air temperature was -2°C and the pressure was 100.8 kPa. What will happen to the volume of the 4.2 L balloons that were tied to the front of the house? Given: Pi = 100.8 kPa Pf = 103.0 kPa Vi = 4.2 L Vf = ? Ti = -2°C = 271K Tf = -25°C = 248K PiVi = PfVf Ti Tf (100.8 kPa) (4.2 L) = (103.0 kPa) Vf (271 K) (248K) Vf = 3.76 L Therefore the volume of the balloons will decrease to 3.8 L
  • 17. GASES: Dalton’s Law Dalton’s Law of Partial Pressures: The total pressure of a mixture of gases is the sum of the pressures of each of the individual gases Ptotal = P1 + P2 + P3 + P4 + P5 +… + Pn Practice: Page 460 #22-23
  • 18. GASES: Ideal Gas Law Gay-Lussac: Mole ratios are the same as volume ratios Avogadro’s Hypothesis: Equal volumes of all ideal gases at the same temperature and pressure contain the same number of molecules
  • 19. GASES: Ideal Gas Law For example: 2H2(g) + O2(g)  2H2O(g) 2 mol + 1 mol  2 mol 2 volumes + 1 volume  2 volume So if you react 2L of hydrogen gas with 1L of oxygen gas, you will get… 2L of water vapour!!!
  • 20. GASES: Ideal Gas Law Ideal Gas Law formula: (Most IMPORTANT formula) PV = nRT Pressure (kPa) Volume (L) Number of moles (mol) Universal gas constant 8.314 kPa∙L mol∙K Temperature (K)
  • 21. GASES: CALCULATIONS Sulfuric acid reacts with iron metal to produce gas and an iron compound. What volume of gas is produced when excess sulfuric acid reacts with 40.0g of iron at 18°C and 100.3 kPa? Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa STEP 1: Write the balanced chemical equation Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq) n = m/M = (40.0g) / (55.85g/mol) = 0.716 mol Fe STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!) 1 mol H2 = x 1 mol Fe 0.716 mol Fe x = 0.716 mol H2 STEP 3: Use the ideal gas law to solve for the volume
  • 22. GASES: CALCULATIONS Sulfuric acid reacts with iron metal to produce gas and an iron compound. What volume of gas is produced when excess sulfuric acid reacts with 40.0g of iron at 18°C and 100.3 kPa? Given: mFe= 40.0g T = 18.0°C = 291K P = 100.3 kPa STEP 3: Use the ideal gas law to solve for the volume PV = nRT V = nRT P = (0.716 mol x 8.314 kPa∙L/mol∙K x 291 K) (100.3 kPa) = 17.3 L Therefore 17.3 L of hydrogen gas are produced Practice: Page 506 #30-34
  • 23. GASES: CALCULATIONS A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen gas. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa ? Pressure of water vapour at 28°C = 3.78 kPa (from page 596, Table 1) Ptotal = PH2O + PH2 (101.8 kPa) = 3.78 kPa + PH2 Dalton’s Law of Partial Pressures PH2 = 98.0 kPa
  • 24. GASES: CALCULATIONS A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen has. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 98.0 kPa STEP 1: Write the balanced chemical equation Mg(s) + 2HCl(aq)  MgCl2(ag) + H2(g) n = m/M = (0.15g) / (24.31g/mol) = 0.0062 mol STEP 2: Use molar ratios to solve for amount of product made (stoichiometry!) 1 mol H2 = x 1 mol Mg 0.0062 mol Mg x = 0.0062 mol H2 STEP 3: Use the ideal gas law to solve for the volume
  • 25. GASES: CALCULATIONS STEP 3: Use the ideal gas law to solve for the volume PV = nRT V = nRT P = (0.0062 mol x 8.314 kPa∙L/mol∙K x 301 K) (98.0 kPa) = 0.16 L Therefore the student collects 0.16 L of dry hydrogen Practice: Page 511 #37-39 A student reacts magnesium with excess dilute hydrochloric acid to produce hydrogen gas. She uses 0.15g of magnesium metal. What volume of dry hydrogen does she collect over water at 28°C and 101.8 kPA? Given: mMg= 0.15g T = 28.0°C = 301K P = 101.8 kPa