-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
This talk demonstrates the capability of particle filters to combine measurements to model simulation in a stochastic framework, in order to formulate some feedback information on the wildfire behavior. This is illustrated based on a reduced-scale controlled grassland fire experiment.
Sampling Importance Re-sampling (SIR) and Auxiliary Sampling Importance Re-sampling (ASIR) filters were built on top of a level-set based front-tracking simulator in order to assimilate the time-evolving positions of the fire front and thereby correct the input environmental parameters of the fire spread model (i.e. vegetation properties, surface wind conditions).
Reference published in October 2014
➞ da Silva, W.B., Rochoux, M.C., Orlande, H., Colaço, M., Fudym, O., El Hafi, M., Cuenot, B., and Ricci, S. (2014) Application of particle filters to regional-scale wildfire spread, High Temperatures-High Pressures, International Journal of Thermophysical Properties Research, 43, 415-440.
Be the first to like this
Login to see the comments