
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Similarity join is most important technique to
involve many applications such as data integration, record
linkage and pattern recognition. Here we introduce new
algorithm for similarity join with edit distance constraints.
Currently extracting overlapping grams from string and consider
only string that share certain gram as candidate. Now we propose
extracting nonoverlapping substring or chunk from string.
Chunk scheme based on tailrestricted chunk boundary
dictionary (CBD). This approach integrated existing approach
for calculating similarity with several new filters unique to chunk
based method. Greedy algorithm automatically select good
chunking scheme from given data set. Then show the result our
method occupies less space and faster performance to compute
the value
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment