Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Application Development Series
Back to Basics
Reporting & Analytics
Daniel Roberts
@dmroberts
#MongoDBBasics
2
• Recap from last session
• Reporting / Analytics options
• Map Reduce
• Aggregation Framework introduction
– Aggregatio...
3
• Virtual Genius Bar
– Use the chat to post
questions
– EMEA Solution
Architecture / Support
team are on hand
– Make use...
Recap from last time….
5
Indexing
• Indexes
• Multikey, compound,
„dot.notation‟
• Covered, sorting
• Text, GeoSpatial
• Btrees
>db.articles.ensu...
6
Index performance / efficiency
• Examine index plans
• Identity slow queries
• n / nscanned ratio
• Which index used.
op...
Reporting / Analytics options
8
• Query Language
– Leverage pre aggregated documents
• Aggregation Framework
– Calculate new values from the data that w...
9
• Immediate results
– Simple from a query
perspective.
– Interactions collection
Pre Aggregated Reports
{
„_id‟ : Object...
10
• Use query result to display directly in application
– Create new REST API
– D3.js library or similar in UI
Pre Aggreg...
Map Reduce
12
• Map Reduce
– MongoDB – JavaScript
• Incremental Map Reduce
Map Reduce
//Map Reduce Example
> db.articles.mapReduce(
f...
13
MongoDB – Hadoop Connector
Hadoop Integration
Primary
Secondary
Secondary
HDFS
Primary
Secondary
Secondary
Primary
Seco...
Aggregation Framework
15
• Multi-stage pipeline
– Like a unix pipe –
• “ps -ef | grep mongod”
– Aggregate data, Transform
documents
– Implemente...
16
In our mycms application..
//Our new python example
@app.route('/cms/api/v1.0/tag_counts', methods=['GET'])
def tag_cou...
17
• Pipeline and Expression operators
Aggregation operators
Pipeline
$match
$sort
$limit
$skip
$project
$unwind
$group
$g...
18
• What reports and analytics do we need in our
application?
– Popular Tags
– Popular Articles
– Popular Locations – int...
19
• Unwind each „tags‟ array
• Group and count each one, then Sort
• Output to new collection
– Query from new collection...
20
• Top 5 articles by average daily views
– Use the $avg operator
– Use use $match to constrain data range
• Utilise with...
21
• Use Explain plan to ensure the efficient use of the
index when querying.
Aggregation Framework Explain
db.interaction...
22
Explain output…
{
"stages" : [
{
"$cursor" : { "query" : … }, "fields" : { … },
"plan" : {
"cursor" : "BasicCursor",
"i...
Geo Spatial & Text Search
Aggregation
24
• $text operator with aggregation framework
– All articles with MongoDB
– Group by author, sort by comments count
Text ...
25
• $geoNear operator with aggregation framework
– Again use geo operator in the $match statement.
– Group by author, and...
Summary
27
• Aggregating Data…
– Map Reduce
– Hadoop
– Pre-Aggregated Reports
– Aggregation Framework
• Tune with Explain plan
• C...
28
– Operations for you application
– Scale out
– Availability
– How do we prepare of production
– Sizing
Next Session – 3...
1403   app dev series - session 5 - analytics
Upcoming SlideShare
Loading in …5
×

1403 app dev series - session 5 - analytics

1,632 views

Published on

  • Be the first to comment

1403 app dev series - session 5 - analytics

  1. 1. Application Development Series Back to Basics Reporting & Analytics Daniel Roberts @dmroberts #MongoDBBasics
  2. 2. 2 • Recap from last session • Reporting / Analytics options • Map Reduce • Aggregation Framework introduction – Aggregation explain • mycms application reports • Geospatial with Aggregation Framework • Text Search with Aggregation Framework Agenda
  3. 3. 3 • Virtual Genius Bar – Use the chat to post questions – EMEA Solution Architecture / Support team are on hand – Make use of them during the sessions!!! Q & A
  4. 4. Recap from last time….
  5. 5. 5 Indexing • Indexes • Multikey, compound, „dot.notation‟ • Covered, sorting • Text, GeoSpatial • Btrees >db.articles.ensureIndex( { author : 1, tags : 1 } ) >db.user.find({user:"danr"}, {_id:0, password:1}) >db.articles.ensureIndex( { location: “2dsphere” } ) >>db.articles.ensureIndex( { "$**" : “text”, name : “TextIndex”} ) options db.col.ensureIndex({ key : type})
  6. 6. 6 Index performance / efficiency • Examine index plans • Identity slow queries • n / nscanned ratio • Which index used. operators .explain() , db profiler > db.articles.find( {author:'Dan Roberts‟}) .sort({date:-1} ).explain() > db.setProfilingLevel(1, 100) { "was" : 0, "slowms" : 100, "ok" : 1 } > db.system.profile.find() .pretty()
  7. 7. Reporting / Analytics options
  8. 8. 8 • Query Language – Leverage pre aggregated documents • Aggregation Framework – Calculate new values from the data that we have – For instance : Average views, comments count • MapReduce – Internal Javascript based implementation – External Hadoop, using the MongoDB connector • A combination of the above Access data for reporting, options
  9. 9. 9 • Immediate results – Simple from a query perspective. – Interactions collection Pre Aggregated Reports { „_id‟ : ObjectId(..), „article_id‟ : ObjectId(..), „section‟ : „schema‟, „date‟ : ISODate(..), „daily‟: { „views‟ : 45, „comments‟ : 150 } „hours‟ : { 0 : { „views‟ : 10 }, 1 : { „views‟ : 2 }, … 23 : { „views‟ : 14, „comments‟ : 10 } } } > db.interactions.find( {"article_id" : ObjectId(”…..")}, {_id:0, hourly:1} )
  10. 10. 10 • Use query result to display directly in application – Create new REST API – D3.js library or similar in UI Pre Aggregated Reports { "hourly" : { "0" : { "view" : 1 }, "1" : { "view" : 1 }, …… "22" : { "view" : 5 }, "23" : { "view" : 3 } } }
  11. 11. Map Reduce
  12. 12. 12 • Map Reduce – MongoDB – JavaScript • Incremental Map Reduce Map Reduce //Map Reduce Example > db.articles.mapReduce( function() { emit(this.author, this.comment_count); }, function(key, values) { return Array.sum (values) }, { query : {}, out: { merge: "comment_count" } } ) Output { "_id" : "Dan Roberts", "value" : 6 } { "_id" : "Jim Duffy", "value" : 1 } { "_id" : "Kunal Taneja", "value" : 2 } { "_id" : "Paul Done", "value" : 2 }
  13. 13. 13 MongoDB – Hadoop Connector Hadoop Integration Primary Secondary Secondary HDFS Primary Secondary Secondary Primary Secondary Secondary Primary Secondary Secondary HDFS HDFS HDFS MapReduce MapReduce MapReduce MapReduce MongoS MongoSMongoS Application ApplicationApplication Application Dash Boards / Reporting 1) Data Flow, Input / Output via Application Tier
  14. 14. Aggregation Framework
  15. 15. 15 • Multi-stage pipeline – Like a unix pipe – • “ps -ef | grep mongod” – Aggregate data, Transform documents – Implemented in the core server Aggregation Framework //Find out which are the most popular tags… db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } } ]) Output { "_id" : "mongodb", "number" : 6 } { "_id" : "nosql", "number" : 3 } { "_id" : "database", "number" : 1 } { "_id" : "aggregation", "number" : 1 } { "_id" : "node", "number" : 1 }
  16. 16. 16 In our mycms application.. //Our new python example @app.route('/cms/api/v1.0/tag_counts', methods=['GET']) def tag_counts(): pipeline = [ { "$unwind" : "$tags" }, { "$group" : { "_id" : "$tags" , "number" : { "$sum" : 1 } } }, { "$sort" : { "number" : -1 } }] cur = db['articles'].aggregate(pipeline, cursor={}) # Check everything ok if not cur: abort(400) # iterate the cursor and add docs to a dict tags = [tag for tag in cur] return jsonify({'tags' : json.dumps(tags, default=json_util.default)})
  17. 17. 17 • Pipeline and Expression operators Aggregation operators Pipeline $match $sort $limit $skip $project $unwind $group $geoNear $text $search Tip: Other operators for date, time, boolean and string manipulation Expression $addToSet $first $last $max $min $avg $push $sum Arithmetic $add $divide $mod $multiply $subtract Conditional $cond $ifNull Variables $let $map
  18. 18. 18 • What reports and analytics do we need in our application? – Popular Tags – Popular Articles – Popular Locations – integration with Geo Spatial – Average views per hour or day Application Reports
  19. 19. 19 • Unwind each „tags‟ array • Group and count each one, then Sort • Output to new collection – Query from new collection so don‟t need to compute for every request. Popular Tags db.articles.aggregate([ { $unwind : "$tags" }, { $group : { _id : "$tags" , number : { $sum : 1 } } }, { $sort : { number : -1 } }, { $out : "tags"} ])
  20. 20. 20 • Top 5 articles by average daily views – Use the $avg operator – Use use $match to constrain data range • Utilise with $gt and $lt operators Popular Articles db.interactions.aggregate([ { {$match : { date : { $gt : ISODate("2014-02-20T00:00:00.000Z")}}}, {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ]);
  21. 21. 21 • Use Explain plan to ensure the efficient use of the index when querying. Aggregation Framework Explain db.interactions.aggregate([ {$group : {_id: "$article_id", a : { $avg : "$daily.view"}}}, {$sort : { a : -1}}, {$limit : 5} ], {explain : true} );
  22. 22. 22 Explain output… { "stages" : [ { "$cursor" : { "query" : … }, "fields" : { … }, "plan" : { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false, "allPlans" : [ { "cursor" : "BasicCursor", "isMultiKey" : false, "scanAndOrder" : false } ] } } }, … "ok" : 1 }
  23. 23. Geo Spatial & Text Search Aggregation
  24. 24. 24 • $text operator with aggregation framework – All articles with MongoDB – Group by author, sort by comments count Text Search db.articles.aggregate([ { $match: { $text: { $search: "mongodb" } } }, { $group: { _id: "$author", comments: { $sum: "$comment_count" } } } {$sort : {comments: -1}}, ])
  25. 25. 25 • $geoNear operator with aggregation framework – Again use geo operator in the $match statement. – Group by author, and article count. Utilise with Geo spatial db.articles.aggregate([ { $match: { location: { $geoNear : { $geometry : { type: "Point" ,coordinates : [-0.128, 51.507] } }, $maxDistance :5000} } }, { $group: { _id: "$author", articleCount: { $sum: 1 } } } ])
  26. 26. Summary
  27. 27. 27 • Aggregating Data… – Map Reduce – Hadoop – Pre-Aggregated Reports – Aggregation Framework • Tune with Explain plan • Compute on the fly or Compute and store • Geospatial • Text Search Summary
  28. 28. 28 – Operations for you application – Scale out – Availability – How do we prepare of production – Sizing Next Session – 3th April

×