Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Introduction to the Finite
Element Me...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Understand the basic ste...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
The Mathematical Model
• Solve:
• Sub...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #1: Discretization
• At this ste...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #2: Element Equations
• Let’s co...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Polynomial Approximation
• Now, we ma...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Polynomial Approximation
• Interpolat...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Polynomial Approximation
 
   ...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #2: Element Equations
(cont’d)
•...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #2: Element Equations
(cont’d)
•...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #2: Element Equations
(cont’d)
•...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Step #2: Element Equations
(cont’d)
•...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
What happens for adjacent
elements?
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Objectives
• Learn how the finite ele...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Recall
• In the previous lecture, we ...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Two–Element example








...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Illustration: Bar application
1. Disc...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Performing Integration:






...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Two–Element bar example






...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Applying Boundary Conditions
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Applying BC’s
• For the bar with fixe...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Solving
• Removing the first row and ...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secondary Variables
• Using the value...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Secondary Variables
• Using the first...
2nd order DE’s in 1-D
Mohammad Tawfik
#WikiCourses
http://WikiCourses.WikiSpaces.com
Summary
• In this lecture, we learned...
Upcoming SlideShare
Loading in …5
×

1

Share

Download to read offline

FEM: Element Equations

Download to read offline

How to create and solve finite element models?
Application to 2nd Order Differential Equations!

#WikiCourses #FEM
https://wikicourses.wikispaces.com/TopicX+Element+Equations

FEM: Element Equations

  1. 1. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Introduction to the Finite Element Method 2nd order DE’s in 1-D
  2. 2. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Understand the basic steps of the finite element analysis • Apply the finite element method to second order differential equations in 1-D
  3. 3. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com The Mathematical Model • Solve: • Subject to: Lx fcu dx du a dx d         0 0   00 ,0 Q dx du auu Lx        
  4. 4. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #1: Discretization • At this step, we divide the domain into elements. • The elements are connected at nodes. • All properties of the domain are defined at those nodes.
  5. 5. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #2: Element Equations • Let’s concentrate our attention to a single element. • The same DE applies on the element level, hence, we may follow the procedure for weighted residual methods on the element level! 21 0 xxx fcu dx du a dx d             21 2211 21 , ,, Q dx du aQ dx du a uxuuxu xxxx              
  6. 6. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Polynomial Approximation • Now, we may propose an approximate solution for the primary variable, u(x), within that element. • The simplest proposition would be a polynomial!
  7. 7. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Polynomial Approximation • Interpolating the values of displacement knowing the nodal displacements, we may write:   01 bxbxu    01111 bxbuxu    2 12 1 1 12 2 u xx xx u xx xx xu                    02122 bxbuxu 
  8. 8. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Polynomial Approximation        e ux u u uu u xx xx u xx xx xu                           2 1 212211 2 12 1 1 12 2
  9. 9. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #2: Element Equations (cont’d) • Assuming constant domain properties: • Applying the Galerkin method: 21 2 2 0 xxx fcu dx ud a             02 2       Domain jiiji i j dxfxuxxcu dx xd xa   
  10. 10. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #2: Element Equations (cont’d) • Note that: • And:     ee hdx xd hdx xd 1 , 1 21                         Domain ij x x i j Domain i j dx dx xd dx xd a dx xd xa dx dx xd xa     2 1 2 2
  11. 11. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #2: Element Equations (cont’d) • For i=j=1: (and ignoring boundary terms) • Which gives: 0 12 1 2 1 2 2 2                                  x x eee dx h xx fu h xx c h a 0 23 1        ee e fh u ch h a
  12. 12. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Step #2: Element Equations (cont’d) • Repeating for all terms: • The above equation is called the element equation.                                    1 1 221 12 611 11 2 1 ee e fh u uch h a
  13. 13. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com What happens for adjacent elements?
  14. 14. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Objectives • Learn how the finite element model for the whole domain is assembled • Learn how to apply boundary conditions • Solving the system of linear equations
  15. 15. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Recall • In the previous lecture, we obtained the element equation that relates the element degrees of freedom to the externally applied fields • Which maybe written:                                    1 1 221 12 611 11 2 1 ee e fh u uch h a                    2 1 2 1 43 21 f f u u kk kk
  16. 16. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Two–Element example                    1 2 1 1 1 2 1 1 1 4 1 3 1 2 1 1 f f u u kk kk                    2 2 2 1 2 2 2 1 2 4 2 3 2 2 2 1 f f u u kk kk                                            3 2 1 3 2 1 3 2 1 2 4 2 3 2 2 2 1 1 4 1 3 1 2 1 1 0 0 Q Q Q f f f u u u kk kkkk kk
  17. 17. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Illustration: Bar application 1. Discretization: Divide the bar into N number of elements. The length of each element will be (L/N) 2. Derive the element equation from the differential equation for constant properties an externally applied force:   02 2    xF x u EA 0 2 1 2                   x x ij ij e dxfu dx d dx d h EA  
  18. 18. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Performing Integration:                      1 1 211 11 2 1 e e e e fh u u h EA Note that if the integration is evaluated from 0 to he, where he is the element length, the same results will be obtained. 0 2 1 2                   x x ij ij e dxfu dx d dx d h EA  
  19. 19. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Two–Element bar example                      1 2 1 1 1 2 1 1 11 11 f f u u h EA e                      2 2 2 1 2 2 2 1 11 11 f f u u h EA e                                              0 0 1 2 1 2 110 121 011 3 2 1 R fh u u u h EA e e
  20. 20. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Applying Boundary Conditions
  21. 21. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Applying BC’s • For the bar with fixed left side and free right side, we may force the value of the left-displacement to be equal to zero:                                              0 0 1 2 1 2 0 110 121 011 3 2 R fh u u h EA e e
  22. 22. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Solving • Removing the first row and column of the system of equations: • Solving:                      1 2 211 12 3 2 e e fh u u h EA              4 3 2 2 3 2 EA fh u u e
  23. 23. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secondary Variables • Using the values of the displacements obtained, we may get the value of the reaction force:                                                    0 0 1 2 1 2 2 4 2 3 0 110 121 011 R fh fh fh e e e
  24. 24. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Secondary Variables • Using the first equation, we get: • Which is the exact value of the reaction force. R fhfh ee  22 3 efhR 2
  25. 25. 2nd order DE’s in 1-D Mohammad Tawfik #WikiCourses http://WikiCourses.WikiSpaces.com Summary • In this lecture, we learned how to assemble the global matrices of the finite element model; how to apply the boundary conditions, and solve the system of equations obtained. • And finally, how to obtain the secondary variables.
  • MahmoudElAssmaey

    Nov. 1, 2016

How to create and solve finite element models? Application to 2nd Order Differential Equations! #WikiCourses #FEM https://wikicourses.wikispaces.com/TopicX+Element+Equations

Views

Total views

3,125

On Slideshare

0

From embeds

0

Number of embeds

1,587

Actions

Downloads

298

Shares

0

Comments

0

Likes

1

×