SlideShare a Scribd company logo
1 of 44
Download to read offline
Semana 10
Ciclos de potencia de vapor y
combinados
Dr. Renzon Cosme Pecho
• Analizar ciclos de potencia de vapor.
• Ciclo Rankine
• Analizar ciclos de potencia combinados y ciclos
binarios.
Ciclo de potencia de vapor
Considere un ciclo de Carnot de flujo estacionario
ejecutado dentro de la curva de saturación de una
sustancia pura.
Ciclo de potencia de vapor
Recordando la curva
Proceso 1-2: El fluido se calienta,
reversible e isotérmicamente en una
caldera.
Proceso 2-3: se expande isentrópicamente
en una turbina.
Proceso 3-4: se condensa reversible e
isotérmicamente en un condensador.
Proceso 4-1: se condensa de manera
isentrópica mediante un comprensor hasta
su estado inicial.
Ciclo de potencia de vapor
• Sin embargo, este ciclo presenta problemas como: la
compresión isentrópica (S=cte) a presiones extremadamente
altas y la transferencia isotérmica de calor a presiones variables.
• Por lo tanto concluimos que el ciclo de Carnot no puede
lograrse en los dispositivos reales y NO es un modelo
realista para los ciclos de potencia de vapor.
• Ciclo ideal para ciclos de potencia de vapor
• Ciclo ideal para centrales eléctricas de vapor
Ciclo de Rankine
Diagrama T-S: Ciclo Rankine Ideal
El Diagrama T-s de un Ciclo Rankine Ideal está formado por cuatro
procesos: 2 Isentrópicos , 2 Isobáricos, Adiabático.
Proceso
Isentrópico
Entropía
permanece
constante.
Proceso
Adiabático
No
intercambia calor
con su entorno.
Proceso
Isobárico
Ocurre a Presión
Constante.
Tiene 4 procesos: 1-2 Compresión isentrópica en una bomba, 2-3
Adición de calor a presión constante en una caldera, 3-4
Expansión isentrópica en una turbina, 4-1 Rechazo de calor a
presión constante en un condensador
Ciclo de Rankine
• Los cuatro componentes
asociados con el ciclo
Rankine (la bomba, la
caldera, la turbina y el
condensador) son dispositivos
de flujo estacionario, por lo
tanto, pueden ser analizados
como procesos de flujo
estacionario.
• Ep y Ec son pequeños, por tanto
consideramos insignificante.
Ciclo de Rankine: Análise de energía
La ecuación de energía de flujo estacionario, por unidad
de masa de vapor.
Ciclo de Rankine: Análise de energía
La caldera y el condensador no incluyen ningún trabajo y se
supone que la bomba y la turbina son isentrópicas, la ecuación
de energía para cada dispositivo es:
Ciclo de Rankine: Análise de energía
Problemas
Considere una central eléctrica de vapor que opera en el ciclo
Rankine ideal simple. El vapor de agua entra a la turbina a 3 MPa y
350°C y es condensado a una presión de 75 kPa. Determine la
eficiencia térmica de este ciclo.
Solución:
Problemas
Solución:
Ciclo de Rankine
Desviación de ciclos de potencia de vapor reales
respecto de los idealizados
El ciclo real de potencia de vapor difiere del ciclo Rankine ideal,
como se ilustra en la figura, como resultado de irreversibilidades
de diversos componentes: fricción del fluido e perdida de calor.
Ciclo de Rankine
Desviación de ciclos de potencia de vapor reales
respecto de los idealizados
Las irreversibilidades que suceden dentro de la bomba y la turbina
son importantes. La bomba requiere entrada de trabajo mayor y la
turbina produce la salida de trabajo más pequeña como
consecuencia de las irreversibilidades.
La desviación existente entre bombas y turbinas reales con
respecto de las isentrópicas es:
Como incrementar la eficiencia del ciclo
de Rankine.
• Reducción de la presión del condensador
• Sobrecalentamiento del vapor a altas Temperaturas
• Incremento de la presión de la caldera
Incrementar la
Temperatura Promedio en
la Caldera
¿Cómo incrementar la Eficiencia?
Disminuir la Temperatura
Promedio en el
Condensador
Formas de incrementar la Eficiencia
1. Reducción de la presión
del condensador:
Reduce automáticamente la
temperatura del vapor.
Reduce la temperatura a la
cual el calor se rechaza.
2. Incremento de la presión de la
caldera:
Elevando la temperatura de ebullición.
Esto, a su vez, incrementa la
temperatura promedio a la que se
añade calor al vapor.
Formas de incrementar la Eficiencia
3. Sobrecalentamiento del
vapor a altas temperaturas:
Es posible elevar la temperatura
promedio a la que se añade calor
al vapor sin aumentar la presión de
la caldera.
logrando un incremento en el
trabajo de la turbina.
Formas de incrementar la Eficiencia
Problemas
Considere una central eléctrica de vapor que opera con el ciclo
Rankine ideal. El vapor entra a la turbina a 3 MPa y 350°C y se
condensa en el condensador a una presión de 10 kPa. Determine
a) la eficiencia térmica de esta central eléctrica, b) la eficiencia
térmica si el vapor se sobrecalienta a 600°C en lugar de 350°C, c)
la eficiencia térmica si la presión de la caldera se eleva a 15 MPa
mientras la temperatura de entrada de la turbina se mantiene en
600°C.
Solución:
Problemas
Solución: Los diagramas T-s del ciclo para los tres casos
Problemas
Solución:
Problemas
Solución:
Problemas
Solución:
Ciclo Rankine con Recalentamiento:
Consideraciones generales
El recalentamiento es una solución práctica al problema
de humedad excesiva en turbinas y es comúnmente
utilizada en modernas centrales eléctricas de vapor.
Aumentando la presión de operación
en la caldera.
Pero: Origina un mayor grado de
humedad.
Sin Embargo: Puede solucionarse
haciendo uso de recalentamiento.
Ciclo Rankine con Recalentamiento.
PRIMERA ETAPA (TURBINA DE ALTA
PRESION)
En ésta el vapor se expande isentropicamente
hasta una presión intermedia y regresa a la
caldera donde se recalienta a presión constante.
SEGUNDA ETAPA
(TURBINA DE BAJA PRESION)
El vapor se expande isentropicamente hasta la
presión del condensador para luego dar inicio
nuevamente al ciclo.
El Ciclo Rankine Regenerativo
consiste, en extraer parte del vapor
expandido en la turbina y utilizarlo
para suministrar calor al fluido de
trabajo, aumentado su temperatura
antes de pasar por la fuente
principal de calor (Caldera) a una
presión determinada.
Ciclo Rankine Regenerativo
Calentadores abiertos de agua de alimentación
Es básicamente una cámara de mezclado en la que el vapor
extraído de la turbina se mezcla con el agua de alimentación que
sale de la bomba.
Ciclo Rankine Regenerativo
P2=P3=P6
T3=Tsat@P6
Calentadores abiertos de agua de alimentación
ciclo Rankine regenerativo con un calentador de agua de
alimentación pueden expresarse por
Ciclo Rankine Regenerativo
Calentadores abiertos de agua de alimentación
Ciclo Rankine Regenerativo
Ventajas:
Tienen menor costo (simplicidad), mejoran el
rendimiento, la disposición de regeneración es
más eficiente.
Calentadores cerrados de agua de alimentación
En un calentador cerrado no se mezclan las corrientes que entran.
El aguade alimentación circula por el interior de los tubos que
pasan por el calentador y el vapor extraído de la turbina para
precalentar el agua, se condensa sobre los tubos.
.
Ciclo Rankine Regenerativo
Ciclo Rankine Regenerativo
Problemas
Considere una central eléctrica de vapor que opera en un ciclo
Rankine ideal regenerativo con un calentador abierto de agua de
alimentación. El vapor entra a la turbina a 15 MPa y 600°C, y se
condensa en el condensador a una presión de 10 kPa. Una parte
de vapor sale de la turbina a una presión de 1.2 MPa y entra al
calentador abierto de agua de alimentación. Determine la
fracción de vapor extraído de la turbina y la eficiencia térmica del
ciclo.
Solución:
Problemas
Solución:
Problemas
Solución:
Problemas
Solución:
Problemas
Solución:
• El ciclo combinado que más interesa es el ciclo de
turbina de gas (Brayton).
• Tiene una eficiencia térmica más alta que
cualquiera de los ciclos ejecutados individualmente.
• Los ciclos característicos de turbina de gas operan a
temperaturas más altas que los ciclos de vapor.
• ciclo combinado de gas y vapor resulta muy atractivo
desde el punto de vista económico
Ciclo de potencia combinado de gas y vapor
Ciclo de potencia combinado de gas y vapor
Problemas
Considere el ciclo de potencia combinado de gas y vapor
mostrado en la figura. El ciclo superior es un ciclo de turbina de
gas que tiene una relación de presión de 8. El aire entra al
compresor a 300 K y a la turbina a 1 300 K. La eficiencia
isentrópica del compresor es de 80 por ciento, mientras que la de
la turbina de gas es de 85 por ciento. El ciclo inferior es un ciclo
Rankine ideal simple que opera entre los límites de presión de 7
MPa y 5 kPa. El vapor se calienta en un intercambiador de calor
por medio de los gases de escape hasta una temperatura de
500°C. Los gases de escape salen del intercambiador de calor a
450 K. Determine a) la relación entre los flujos másicos del vapor
y de los gases de combustión y b) la eficiencia térmica del ciclo
combinado.
Solución:
Problemas
Solución:
Diagrama T-s el ciclo
combinado de gas y
vapor
Problemas
Solución:
Problemas
Problemas
Solución:

More Related Content

What's hot

Problemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaProblemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaJesus Vera Gonzalez
 
Ciclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaCiclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaYanina C.J
 
Vapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoVapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoDaniel Desmoctt
 
Ciclos de potencia de vapor y combinados
Ciclos de potencia de vapor y  combinadosCiclos de potencia de vapor y  combinados
Ciclos de potencia de vapor y combinadosYanina C.J
 
Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de caloralvaro gómez
 
Solucionario de mecánica de fluidos aplicada Mott 6 edición
Solucionario de mecánica de fluidos aplicada Mott 6 ediciónSolucionario de mecánica de fluidos aplicada Mott 6 edición
Solucionario de mecánica de fluidos aplicada Mott 6 ediciónMaria Reyes
 
Problemas de mci1
Problemas de mci1Problemas de mci1
Problemas de mci1BenYi MB
 
Termodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankineTermodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankinejosecabal
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaAlexander Casio Cristaldo
 
Segunda ley termodinamica
Segunda ley termodinamicaSegunda ley termodinamica
Segunda ley termodinamicacharliebm7512
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorALEXITTOOh
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameerslide71
 

What's hot (20)

Ejercicio 1 (entropía), mayo 2017)
Ejercicio 1 (entropía), mayo 2017)Ejercicio 1 (entropía), mayo 2017)
Ejercicio 1 (entropía), mayo 2017)
 
Problemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tcProblemas propuestos y_resueltos_tc
Problemas propuestos y_resueltos_tc
 
Problemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapiaProblemario termodinamica 2012_tapia
Problemario termodinamica 2012_tapia
 
Ciclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamicaCiclos de refrigeración-termodinamica
Ciclos de refrigeración-termodinamica
 
6 ciclos de potencia
6 ciclos de potencia6 ciclos de potencia
6 ciclos de potencia
 
Vapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentadoVapor saturado, vapor sobrecalentado
Vapor saturado, vapor sobrecalentado
 
Interpolacion en tablas de termodinámica
Interpolacion en tablas de termodinámicaInterpolacion en tablas de termodinámica
Interpolacion en tablas de termodinámica
 
Ciclos de potencia de vapor y combinados
Ciclos de potencia de vapor y  combinadosCiclos de potencia de vapor y  combinados
Ciclos de potencia de vapor y combinados
 
Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de calor
 
Solucionario de mecánica de fluidos aplicada Mott 6 edición
Solucionario de mecánica de fluidos aplicada Mott 6 ediciónSolucionario de mecánica de fluidos aplicada Mott 6 edición
Solucionario de mecánica de fluidos aplicada Mott 6 edición
 
Problemas de mci1
Problemas de mci1Problemas de mci1
Problemas de mci1
 
Termodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankineTermodinamica ejercicios ciclo rankine
Termodinamica ejercicios ciclo rankine
 
Ejemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropiaEjemplos de la 2da ley de termodamica y entropia
Ejemplos de la 2da ley de termodamica y entropia
 
Guía 6 ecuación general de energía
Guía 6  ecuación general de energíaGuía 6  ecuación general de energía
Guía 6 ecuación general de energía
 
Primera ley de Termodinámica
Primera ley de TermodinámicaPrimera ley de Termodinámica
Primera ley de Termodinámica
 
3. psicrometria jm
3. psicrometria jm3. psicrometria jm
3. psicrometria jm
 
Segunda ley termodinamica
Segunda ley termodinamicaSegunda ley termodinamica
Segunda ley termodinamica
 
termodinámica
 termodinámica termodinámica
termodinámica
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelame
 

Viewers also liked

GuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De VaporGuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De Vaporguest1e20ac
 
Ciclo Rankine Regenerativo
Ciclo Rankine RegenerativoCiclo Rankine Regenerativo
Ciclo Rankine RegenerativoItamar Bernal
 
PresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De VaporPresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De VaporUNEFM
 
Ciclo Rankine Simple
Ciclo Rankine SimpleCiclo Rankine Simple
Ciclo Rankine SimpleItamar Bernal
 
Turbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalTurbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalMonica Solorzano
 

Viewers also liked (7)

10.0 ciclo rankine
10.0 ciclo rankine10.0 ciclo rankine
10.0 ciclo rankine
 
GuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De VaporGuíA De Ciclos De Potencia De Vapor
GuíA De Ciclos De Potencia De Vapor
 
Ciclo Rankine Regenerativo
Ciclo Rankine RegenerativoCiclo Rankine Regenerativo
Ciclo Rankine Regenerativo
 
PresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De VaporPresentacióN De Los Ciclos De Vapor
PresentacióN De Los Ciclos De Vapor
 
Ciclo Rankine Simple
Ciclo Rankine SimpleCiclo Rankine Simple
Ciclo Rankine Simple
 
Ciclo Rankine
Ciclo RankineCiclo Rankine
Ciclo Rankine
 
Turbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion finalTurbinas de vapor - presnentacion final
Turbinas de vapor - presnentacion final
 

Similar to Ciclos de potencia combinados

Ciclo de rankine copia
Ciclo de rankine   copiaCiclo de rankine   copia
Ciclo de rankine copiaRigo Cruz
 
Ciclos termodinámica
Ciclos termodinámicaCiclos termodinámica
Ciclos termodinámicaErrer Coiler
 
Unidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continentalUnidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continentalFranciscoLu4
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporDavid Romero
 
Ciclorankine 130926151530-phpapp01
Ciclorankine 130926151530-phpapp01Ciclorankine 130926151530-phpapp01
Ciclorankine 130926151530-phpapp01LDDCV
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1Edgar Ramos
 
Maquinas de fluidos compresibles
Maquinas de fluidos compresiblesMaquinas de fluidos compresibles
Maquinas de fluidos compresiblessambrano
 
Apuntes parte 1.pdf
Apuntes parte 1.pdfApuntes parte 1.pdf
Apuntes parte 1.pdfHectorSolar5
 
Tema 3
Tema 3 Tema 3
Tema 3 sgana
 
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)Domenico Venezia
 
Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3JL Rms
 
Turbinas de Vapor
Turbinas de VaporTurbinas de Vapor
Turbinas de VaporEnder Riera
 
Asignacion de turbinas (gustavo godoy. maria ramirez)
Asignacion de turbinas (gustavo godoy. maria ramirez)Asignacion de turbinas (gustavo godoy. maria ramirez)
Asignacion de turbinas (gustavo godoy. maria ramirez)maramirez92
 
proceso de combustión externa y interna en maquinas pdf
proceso de combustión externa y interna en maquinas  pdfproceso de combustión externa y interna en maquinas  pdf
proceso de combustión externa y interna en maquinas pdfingenieriamantenimie1
 

Similar to Ciclos de potencia combinados (20)

Exposición termodinámica2
Exposición termodinámica2Exposición termodinámica2
Exposición termodinámica2
 
Ciclo de rankine copia
Ciclo de rankine   copiaCiclo de rankine   copia
Ciclo de rankine copia
 
Ciclos termodinámica
Ciclos termodinámicaCiclos termodinámica
Ciclos termodinámica
 
CICLO RANKINE.pptx
CICLO RANKINE.pptxCICLO RANKINE.pptx
CICLO RANKINE.pptx
 
Unidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continentalUnidad 2.1. Ciclo Rankine.pptx universidad continental
Unidad 2.1. Ciclo Rankine.pptx universidad continental
 
Tema 1-ciclo-de-vapor
Tema 1-ciclo-de-vaporTema 1-ciclo-de-vapor
Tema 1-ciclo-de-vapor
 
Ciclorankine 130926151530-phpapp01
Ciclorankine 130926151530-phpapp01Ciclorankine 130926151530-phpapp01
Ciclorankine 130926151530-phpapp01
 
Resumen unidad 1
Resumen unidad 1Resumen unidad 1
Resumen unidad 1
 
Eter2 u2 a1_ardc
Eter2 u2 a1_ardcEter2 u2 a1_ardc
Eter2 u2 a1_ardc
 
Ciclo rankine
Ciclo rankineCiclo rankine
Ciclo rankine
 
Actividad 1
Actividad 1Actividad 1
Actividad 1
 
Maquinas de fluidos compresibles
Maquinas de fluidos compresiblesMaquinas de fluidos compresibles
Maquinas de fluidos compresibles
 
Apuntes parte 1.pdf
Apuntes parte 1.pdfApuntes parte 1.pdf
Apuntes parte 1.pdf
 
Tema 3
Tema 3 Tema 3
Tema 3
 
CICLO RANKINE.pptx
CICLO RANKINE.pptxCICLO RANKINE.pptx
CICLO RANKINE.pptx
 
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
Resumen Ciclo de Potencia y Refrigeracion (Termodinámica II USB)
 
Teoriadeltema3
Teoriadeltema3Teoriadeltema3
Teoriadeltema3
 
Turbinas de Vapor
Turbinas de VaporTurbinas de Vapor
Turbinas de Vapor
 
Asignacion de turbinas (gustavo godoy. maria ramirez)
Asignacion de turbinas (gustavo godoy. maria ramirez)Asignacion de turbinas (gustavo godoy. maria ramirez)
Asignacion de turbinas (gustavo godoy. maria ramirez)
 
proceso de combustión externa y interna en maquinas pdf
proceso de combustión externa y interna en maquinas  pdfproceso de combustión externa y interna en maquinas  pdf
proceso de combustión externa y interna en maquinas pdf
 

More from Yanina C.J

Derecho a la preservación de un medio ambiente saludable
Derecho a la preservación de un medio ambiente saludableDerecho a la preservación de un medio ambiente saludable
Derecho a la preservación de un medio ambiente saludableYanina C.J
 
derecho a la paz
 derecho a la paz  derecho a la paz
derecho a la paz Yanina C.J
 
EL PROCESO DE CONSTRUCCION DE MODELOS
EL PROCESO DE CONSTRUCCION DE MODELOSEL PROCESO DE CONSTRUCCION DE MODELOS
EL PROCESO DE CONSTRUCCION DE MODELOSYanina C.J
 
OPTIMIZACIÓN Y PROGRAMACIÓN LINEAL
OPTIMIZACIÓN Y PROGRAMACIÓN LINEALOPTIMIZACIÓN Y PROGRAMACIÓN LINEAL
OPTIMIZACIÓN Y PROGRAMACIÓN LINEALYanina C.J
 
ETICA MODERNA DE KHANT
ETICA MODERNA DE KHANTETICA MODERNA DE KHANT
ETICA MODERNA DE KHANTYanina C.J
 
ETICA CLASICA DE ARISTOTELES
ETICA CLASICA DE ARISTOTELESETICA CLASICA DE ARISTOTELES
ETICA CLASICA DE ARISTOTELESYanina C.J
 
FILOSOFIA DEL SER
FILOSOFIA DEL SERFILOSOFIA DEL SER
FILOSOFIA DEL SERYanina C.J
 
TEORIA DE IDEAS
TEORIA DE IDEASTEORIA DE IDEAS
TEORIA DE IDEASYanina C.J
 
FILOSOFIAS Y SUS HOISTORIAS
FILOSOFIAS Y SUS HOISTORIASFILOSOFIAS Y SUS HOISTORIAS
FILOSOFIAS Y SUS HOISTORIASYanina C.J
 
COSTOS Y PRESUPUESTOS
COSTOS Y PRESUPUESTOSCOSTOS Y PRESUPUESTOS
COSTOS Y PRESUPUESTOSYanina C.J
 
PRESUPUESTO EN UNA EMORESA
PRESUPUESTO EN UNA EMORESAPRESUPUESTO EN UNA EMORESA
PRESUPUESTO EN UNA EMORESAYanina C.J
 
MÉTODOS DE PROMEDIO
MÉTODOS DE PROMEDIOMÉTODOS DE PROMEDIO
MÉTODOS DE PROMEDIOYanina C.J
 
PLAN FINANCIERO DE UNA EMPRESA
PLAN FINANCIERO DE UNA EMPRESAPLAN FINANCIERO DE UNA EMPRESA
PLAN FINANCIERO DE UNA EMPRESAYanina C.J
 
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15Yanina C.J
 
MEZCLA DE GASES
MEZCLA DE GASESMEZCLA DE GASES
MEZCLA DE GASESYanina C.J
 
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...Yanina C.J
 
el cambio de energía de un sistema
el cambio de energía de un sistemael cambio de energía de un sistema
el cambio de energía de un sistemaYanina C.J
 
TRABAJO FINAL DE ESTADISTICA
TRABAJO FINAL DE ESTADISTICATRABAJO FINAL DE ESTADISTICA
TRABAJO FINAL DE ESTADISTICAYanina C.J
 
Estimación de Parámetros y Tamaño de muestra-esta
Estimación de Parámetros y Tamaño de muestra-estaEstimación de Parámetros y Tamaño de muestra-esta
Estimación de Parámetros y Tamaño de muestra-estaYanina C.J
 
Prueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaPrueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaYanina C.J
 

More from Yanina C.J (20)

Derecho a la preservación de un medio ambiente saludable
Derecho a la preservación de un medio ambiente saludableDerecho a la preservación de un medio ambiente saludable
Derecho a la preservación de un medio ambiente saludable
 
derecho a la paz
 derecho a la paz  derecho a la paz
derecho a la paz
 
EL PROCESO DE CONSTRUCCION DE MODELOS
EL PROCESO DE CONSTRUCCION DE MODELOSEL PROCESO DE CONSTRUCCION DE MODELOS
EL PROCESO DE CONSTRUCCION DE MODELOS
 
OPTIMIZACIÓN Y PROGRAMACIÓN LINEAL
OPTIMIZACIÓN Y PROGRAMACIÓN LINEALOPTIMIZACIÓN Y PROGRAMACIÓN LINEAL
OPTIMIZACIÓN Y PROGRAMACIÓN LINEAL
 
ETICA MODERNA DE KHANT
ETICA MODERNA DE KHANTETICA MODERNA DE KHANT
ETICA MODERNA DE KHANT
 
ETICA CLASICA DE ARISTOTELES
ETICA CLASICA DE ARISTOTELESETICA CLASICA DE ARISTOTELES
ETICA CLASICA DE ARISTOTELES
 
FILOSOFIA DEL SER
FILOSOFIA DEL SERFILOSOFIA DEL SER
FILOSOFIA DEL SER
 
TEORIA DE IDEAS
TEORIA DE IDEASTEORIA DE IDEAS
TEORIA DE IDEAS
 
FILOSOFIAS Y SUS HOISTORIAS
FILOSOFIAS Y SUS HOISTORIASFILOSOFIAS Y SUS HOISTORIAS
FILOSOFIAS Y SUS HOISTORIAS
 
COSTOS Y PRESUPUESTOS
COSTOS Y PRESUPUESTOSCOSTOS Y PRESUPUESTOS
COSTOS Y PRESUPUESTOS
 
PRESUPUESTO EN UNA EMORESA
PRESUPUESTO EN UNA EMORESAPRESUPUESTO EN UNA EMORESA
PRESUPUESTO EN UNA EMORESA
 
MÉTODOS DE PROMEDIO
MÉTODOS DE PROMEDIOMÉTODOS DE PROMEDIO
MÉTODOS DE PROMEDIO
 
PLAN FINANCIERO DE UNA EMPRESA
PLAN FINANCIERO DE UNA EMPRESAPLAN FINANCIERO DE UNA EMPRESA
PLAN FINANCIERO DE UNA EMPRESA
 
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15
W20150716200950703 7000127305 11-05-2015_135537_pm_semana 15
 
MEZCLA DE GASES
MEZCLA DE GASESMEZCLA DE GASES
MEZCLA DE GASES
 
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...Relaciones de propiedades  termodinámicas, relaciones  de Maxwell, ecuación d...
Relaciones de propiedades termodinámicas, relaciones de Maxwell, ecuación d...
 
el cambio de energía de un sistema
el cambio de energía de un sistemael cambio de energía de un sistema
el cambio de energía de un sistema
 
TRABAJO FINAL DE ESTADISTICA
TRABAJO FINAL DE ESTADISTICATRABAJO FINAL DE ESTADISTICA
TRABAJO FINAL DE ESTADISTICA
 
Estimación de Parámetros y Tamaño de muestra-esta
Estimación de Parámetros y Tamaño de muestra-estaEstimación de Parámetros y Tamaño de muestra-esta
Estimación de Parámetros y Tamaño de muestra-esta
 
Prueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadisticaPrueba de Hipótesis para una media y proporción-estadistica
Prueba de Hipótesis para una media y proporción-estadistica
 

Recently uploaded

TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfDannyTola1
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxMartín Ramírez
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxJUANSIMONPACHIN
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPELaura Chacón
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfCESARMALAGA4
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleJonathanCovena1
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFAROJosé Luis Palma
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)veganet
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfluisantoniocruzcorte1
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfNataliaMalky1
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfEDILIAGAMBOA
 

Recently uploaded (20)

VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
TEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdfTEST DE RAVEN es un test conocido para la personalidad.pdf
TEST DE RAVEN es un test conocido para la personalidad.pdf
 
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptxc3.hu3.p1.p3.El ser humano como ser histórico.pptx
c3.hu3.p1.p3.El ser humano como ser histórico.pptx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docxPLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
PLANIFICACION ANUAL 2024 - INICIAL UNIDOCENTE.docx
 
Plan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPEPlan Año Escolar Año Escolar 2023-2024. MPPE
Plan Año Escolar Año Escolar 2023-2024. MPPE
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdfBIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
BIOLOGIA_banco de preguntas_editorial icfes examen de estado .pdf
 
Introducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo SostenibleIntroducción:Los objetivos de Desarrollo Sostenible
Introducción:Los objetivos de Desarrollo Sostenible
 
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARONARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
NARRACIONES SOBRE LA VIDA DEL GENERAL ELOY ALFARO
 
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
Instrucciones para la aplicacion de la PAA-2024b - (Mayo 2024)
 
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdfÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
ÉTICA, NATURALEZA Y SOCIEDADES_3RO_3ER TRIMESTRE.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdfLA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
LA OVEJITA QUE VINO A CENAR CUENTO INFANTIL.pdf
 
PPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdfPPT_Formación integral y educación CRESE (1).pdf
PPT_Formación integral y educación CRESE (1).pdf
 

Ciclos de potencia combinados

  • 1. Semana 10 Ciclos de potencia de vapor y combinados Dr. Renzon Cosme Pecho
  • 2. • Analizar ciclos de potencia de vapor. • Ciclo Rankine • Analizar ciclos de potencia combinados y ciclos binarios. Ciclo de potencia de vapor
  • 3. Considere un ciclo de Carnot de flujo estacionario ejecutado dentro de la curva de saturación de una sustancia pura. Ciclo de potencia de vapor Recordando la curva
  • 4. Proceso 1-2: El fluido se calienta, reversible e isotérmicamente en una caldera. Proceso 2-3: se expande isentrópicamente en una turbina. Proceso 3-4: se condensa reversible e isotérmicamente en un condensador. Proceso 4-1: se condensa de manera isentrópica mediante un comprensor hasta su estado inicial. Ciclo de potencia de vapor • Sin embargo, este ciclo presenta problemas como: la compresión isentrópica (S=cte) a presiones extremadamente altas y la transferencia isotérmica de calor a presiones variables. • Por lo tanto concluimos que el ciclo de Carnot no puede lograrse en los dispositivos reales y NO es un modelo realista para los ciclos de potencia de vapor.
  • 5. • Ciclo ideal para ciclos de potencia de vapor • Ciclo ideal para centrales eléctricas de vapor Ciclo de Rankine
  • 6. Diagrama T-S: Ciclo Rankine Ideal El Diagrama T-s de un Ciclo Rankine Ideal está formado por cuatro procesos: 2 Isentrópicos , 2 Isobáricos, Adiabático. Proceso Isentrópico Entropía permanece constante. Proceso Adiabático No intercambia calor con su entorno. Proceso Isobárico Ocurre a Presión Constante.
  • 7. Tiene 4 procesos: 1-2 Compresión isentrópica en una bomba, 2-3 Adición de calor a presión constante en una caldera, 3-4 Expansión isentrópica en una turbina, 4-1 Rechazo de calor a presión constante en un condensador Ciclo de Rankine
  • 8. • Los cuatro componentes asociados con el ciclo Rankine (la bomba, la caldera, la turbina y el condensador) son dispositivos de flujo estacionario, por lo tanto, pueden ser analizados como procesos de flujo estacionario. • Ep y Ec son pequeños, por tanto consideramos insignificante. Ciclo de Rankine: Análise de energía
  • 9. La ecuación de energía de flujo estacionario, por unidad de masa de vapor. Ciclo de Rankine: Análise de energía La caldera y el condensador no incluyen ningún trabajo y se supone que la bomba y la turbina son isentrópicas, la ecuación de energía para cada dispositivo es:
  • 10. Ciclo de Rankine: Análise de energía
  • 11. Problemas Considere una central eléctrica de vapor que opera en el ciclo Rankine ideal simple. El vapor de agua entra a la turbina a 3 MPa y 350°C y es condensado a una presión de 75 kPa. Determine la eficiencia térmica de este ciclo. Solución:
  • 13. Ciclo de Rankine Desviación de ciclos de potencia de vapor reales respecto de los idealizados El ciclo real de potencia de vapor difiere del ciclo Rankine ideal, como se ilustra en la figura, como resultado de irreversibilidades de diversos componentes: fricción del fluido e perdida de calor.
  • 14. Ciclo de Rankine Desviación de ciclos de potencia de vapor reales respecto de los idealizados Las irreversibilidades que suceden dentro de la bomba y la turbina son importantes. La bomba requiere entrada de trabajo mayor y la turbina produce la salida de trabajo más pequeña como consecuencia de las irreversibilidades. La desviación existente entre bombas y turbinas reales con respecto de las isentrópicas es:
  • 15. Como incrementar la eficiencia del ciclo de Rankine. • Reducción de la presión del condensador • Sobrecalentamiento del vapor a altas Temperaturas • Incremento de la presión de la caldera
  • 16. Incrementar la Temperatura Promedio en la Caldera ¿Cómo incrementar la Eficiencia? Disminuir la Temperatura Promedio en el Condensador
  • 17. Formas de incrementar la Eficiencia 1. Reducción de la presión del condensador: Reduce automáticamente la temperatura del vapor. Reduce la temperatura a la cual el calor se rechaza.
  • 18. 2. Incremento de la presión de la caldera: Elevando la temperatura de ebullición. Esto, a su vez, incrementa la temperatura promedio a la que se añade calor al vapor. Formas de incrementar la Eficiencia
  • 19. 3. Sobrecalentamiento del vapor a altas temperaturas: Es posible elevar la temperatura promedio a la que se añade calor al vapor sin aumentar la presión de la caldera. logrando un incremento en el trabajo de la turbina. Formas de incrementar la Eficiencia
  • 20. Problemas Considere una central eléctrica de vapor que opera con el ciclo Rankine ideal. El vapor entra a la turbina a 3 MPa y 350°C y se condensa en el condensador a una presión de 10 kPa. Determine a) la eficiencia térmica de esta central eléctrica, b) la eficiencia térmica si el vapor se sobrecalienta a 600°C en lugar de 350°C, c) la eficiencia térmica si la presión de la caldera se eleva a 15 MPa mientras la temperatura de entrada de la turbina se mantiene en 600°C. Solución:
  • 21. Problemas Solución: Los diagramas T-s del ciclo para los tres casos
  • 25. Ciclo Rankine con Recalentamiento: Consideraciones generales El recalentamiento es una solución práctica al problema de humedad excesiva en turbinas y es comúnmente utilizada en modernas centrales eléctricas de vapor. Aumentando la presión de operación en la caldera. Pero: Origina un mayor grado de humedad. Sin Embargo: Puede solucionarse haciendo uso de recalentamiento.
  • 26. Ciclo Rankine con Recalentamiento. PRIMERA ETAPA (TURBINA DE ALTA PRESION) En ésta el vapor se expande isentropicamente hasta una presión intermedia y regresa a la caldera donde se recalienta a presión constante. SEGUNDA ETAPA (TURBINA DE BAJA PRESION) El vapor se expande isentropicamente hasta la presión del condensador para luego dar inicio nuevamente al ciclo.
  • 27. El Ciclo Rankine Regenerativo consiste, en extraer parte del vapor expandido en la turbina y utilizarlo para suministrar calor al fluido de trabajo, aumentado su temperatura antes de pasar por la fuente principal de calor (Caldera) a una presión determinada. Ciclo Rankine Regenerativo
  • 28. Calentadores abiertos de agua de alimentación Es básicamente una cámara de mezclado en la que el vapor extraído de la turbina se mezcla con el agua de alimentación que sale de la bomba. Ciclo Rankine Regenerativo P2=P3=P6 T3=Tsat@P6
  • 29. Calentadores abiertos de agua de alimentación ciclo Rankine regenerativo con un calentador de agua de alimentación pueden expresarse por Ciclo Rankine Regenerativo
  • 30. Calentadores abiertos de agua de alimentación Ciclo Rankine Regenerativo Ventajas: Tienen menor costo (simplicidad), mejoran el rendimiento, la disposición de regeneración es más eficiente.
  • 31. Calentadores cerrados de agua de alimentación En un calentador cerrado no se mezclan las corrientes que entran. El aguade alimentación circula por el interior de los tubos que pasan por el calentador y el vapor extraído de la turbina para precalentar el agua, se condensa sobre los tubos. . Ciclo Rankine Regenerativo
  • 33. Problemas Considere una central eléctrica de vapor que opera en un ciclo Rankine ideal regenerativo con un calentador abierto de agua de alimentación. El vapor entra a la turbina a 15 MPa y 600°C, y se condensa en el condensador a una presión de 10 kPa. Una parte de vapor sale de la turbina a una presión de 1.2 MPa y entra al calentador abierto de agua de alimentación. Determine la fracción de vapor extraído de la turbina y la eficiencia térmica del ciclo. Solución:
  • 38. • El ciclo combinado que más interesa es el ciclo de turbina de gas (Brayton). • Tiene una eficiencia térmica más alta que cualquiera de los ciclos ejecutados individualmente. • Los ciclos característicos de turbina de gas operan a temperaturas más altas que los ciclos de vapor. • ciclo combinado de gas y vapor resulta muy atractivo desde el punto de vista económico Ciclo de potencia combinado de gas y vapor
  • 39. Ciclo de potencia combinado de gas y vapor
  • 40. Problemas Considere el ciclo de potencia combinado de gas y vapor mostrado en la figura. El ciclo superior es un ciclo de turbina de gas que tiene una relación de presión de 8. El aire entra al compresor a 300 K y a la turbina a 1 300 K. La eficiencia isentrópica del compresor es de 80 por ciento, mientras que la de la turbina de gas es de 85 por ciento. El ciclo inferior es un ciclo Rankine ideal simple que opera entre los límites de presión de 7 MPa y 5 kPa. El vapor se calienta en un intercambiador de calor por medio de los gases de escape hasta una temperatura de 500°C. Los gases de escape salen del intercambiador de calor a 450 K. Determine a) la relación entre los flujos másicos del vapor y de los gases de combustión y b) la eficiencia térmica del ciclo combinado. Solución:
  • 41. Problemas Solución: Diagrama T-s el ciclo combinado de gas y vapor