Successfully reported this slideshow.

Sparse and Redundant Representations: Theory and Applications


Published on

Aggelos Katsaggelos, Professor and AT&T Chair, Northwestern University, Department of Electrical Engineering & Computer Science (IEEE/ SPIE Fellow, IEEE SPS DL), Sparse and Redundant Representations: Theory and Applications

Published in: Education, Technology

Sparse and Redundant Representations: Theory and Applications

  1. 1. Sparse and RedundantRepresentations in Signal Processing Aggelos K. Katsaggelos AT&T Chaired Professor Northwestern University Department of EECS Director Motorola Center for Seamless Communications Department of Linguistics NorthSide University Hospital System Argonne National Laboratory Evanston, IL 60208 2nd Greek Signal Processing Jam, Thessaloniki, May 17, 2012
  2. 2. Talk Outline• Underdetermined Linear Systems and Sparsity• Processing of Sparsely‐Generated Signals – Compressive Sensing – Video Indexing and Retrieval – Recommendation Systems (Matrix Completion) – Robust PCA• Final Thoughts
  3. 3. Underdetermined Linear Systems• Problem formulation Ax = b A is n £ m; n < m A full rank• Solution approach: Regularization • Choices of  Unique solution, strictly convex function More than one solutions, convex function Even if infinitely many solutions, there exists at least  one with at most n non‐zeros – sparse solution
  4. 4. Promoting Sparse Solutions• As we move from     to     we promote sparser  solutions• Do     norms with p<1 (no formal norms) lead to  sparser solutions?• 0<p<1 non‐convex optimization
  5. 5. Sparsifying Norms Elad, Sparse and Redundant Representations, Springer, 2010
  6. 6. Promoting Sparse Solutions minimizekxk0 such that y = Ax• norm (p=0); extreme among all sparsifying norms;  combinatorial search, problem NP‐hard• Under what conditions can uniqueness of solution  be claimed? • Can we perform a simple test to verify that an  available candidate solution is a global minimizer? (answers through coherence, sparc, and RIP)
  7. 7. Signal Processing Perspective• Finding sparse solutions to underdetermined linear systems is  a better‐behaved problem• A much more practical and relevant notion than we might  have thought of a few years ago• Many media types can be sparsely represented• Signal representation problem: given a dictionary A find a  single representation among the many possible ones for b• With the     norm both the forward transform (from b to x)  and the inverse transform (from x to b) are linear• With the     norm the inverse transform is linear but the  forward is highly non‐linear
  8. 8. Processing of Sparsely‐Generated  Signals minimize kxk0 subject to k y ¡ Ax k2 < ²• Compressed sensing • Analysis (atomic decomposition)• Compression • Denoising• Inverse problems (deblurring, SR)• Morphological component analysis (inpainting)• Sparsity‐based recognition• Sparse‐modeling image classification• Computational Photography
  9. 9. Dictionaries for Sparse Representation• ON basis vs overcomplete dictionaries• Choice of sparsifying dictionary critical. Based on – Mathematical modeling of data  (e.g., wavelets, wavelet packets and curvelets) – Training data• Given A, find X (sparse coding)• Design dictionary for sparse representation (solve for A  and X simultaneously)• Sparse modeling for image classification (add  discriminative terms to the above formulation)• Learning to sense (solve for A, X and S – sensing matrix)
  10. 10. Learning Restoration Approach R. Nakagaki and A. K. Katsaggelos, "A VQ‐Based Blind Image Restoration Algorithm,"  IEEE Trans. Image Processing, vol.12, no.9, pp. 1044‐1053, Sept. 2003. 
  11. 11. Learning Restoration Approach
  12. 12. A Compressive Sensing System
  13. 13. Sensing by Sampling
  14. 14. Compressive Data Acquisition• When data is sparse/compressible, can directly acquire a  condensed representation with no/little information loss• Random projection will work Candes-Remberg-Tao, Donoho, 2004
  15. 15. Universality• Random measurements can be used for signals sparse in any  basis
  16. 16. Millimeter‐Wave RadiometryUsefulness of millimeter waves: Atmospheric Propagation: Millimeter Wave Radiation is  attenuated millions of times less in clouds, fog, smoke,  snow and sandstorms than visible or IR radiation. Yujiri L. et al. 2006 “Passive Millimeter Wave Imaging” Differences in  emissivity of  * objects: Better  thermal contrast. *Sub‐millimeter Wave λ ~[0.3 ‐ 1]mm 
  17. 17. Advantages Provide target information under all weather conditions. Visible and IR require clear atmospheric conditions for reliable operation. Offer better thermal contrast of objects: Emissivity differences of objects at these wavelengths. Reflectivity variations of common objects for millimeter waves:  (metal ~ 1,  water 0.6 and concrete 0.2). Minimally affected by sun or artificial illumination: Day and night application. Atmospheric Attenuation Apparent Temperature (drizzle and fog) (sky at 94 GHz) PMMW 0.07 ~ 3 dB/km 70 K Visible and IR 100 dB/km 220 KGopalsami et al. 2010 “Passive Millimeter Wave Imaging and Spectroscopy System for Terrestrial Remote Sensing”
  18. 18. Passive Millimeter Wave ImagersMain types of Passive Millimeter Wave Imagers: Single Detector or Single Pixel Imager.– Allows for the use of only one detector.– Not practical for real time imaging due to the point‐ by‐point required scanning. Array of Detectors (similar to CCD or CMOS optical  imagers).– Suitable for real time imaging.– Complex and expensive at mm wavelengths
  19. 19. Lens Scanning Imaging System  at ANL • Dicke‐switched radiometer • 16 Channel, each 0.5 GHz BW, spanning 146 to 154 GHz • 6 inch imaging lens
  20. 20. PMMW Image of Outdoor Scene Upper part of car body looks cooler due to cold‐sky‐reflected radiation.The lower part of the car looks hotter from ground‐reflected radiation. R
  21. 21. Compressive Sensing System6 inch imaging lens Dicke‐switched Radiometer Reconstruction Mask and Super‐Resolution 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz. Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding  cable noise) but a coded aperture mask is scanned at the focal plane of the  lens to produce a set of  coded aperture images
  22. 22. Compressive Sensing System Without Mask With Mask Imaging and Spectroscopy  Compressive Sensing Imaging System System Gopalsami et al. 2009 “Passive Millimeter Babacan et al. 2011 “Compressive Passive Millimeter-Wave Imaging and Spectroscopy System for Wave Imaging” Terrestrial Remote Sensing” Gopalsami et al. 2011 “Compressive Sampling in passive millimeter-wave imaging”
  23. 23. Mask Construction
  24. 24. Compressive Sensing System6 inch imaging lens Dicke‐switched Radiometer Reconstruction Mask and Super‐Resolution 15 Channel radiometer, each 0.5 GHz bandwidth, spanning 146 to 154 GHz. Neither  the  lens  nor  the  radiometer  antenna  are  scanned  (thus  avoiding  cable noise) but a coded aperture mask is scanned at the focal plane of the  lens to produce a set of  coded aperture images
  25. 25. Sparse RepresentationPassive Millimeter Wave (PMMW) Images  are  smooth and they contain no texture information.If we ignore noise, gradient sparsity is expected to be higher than in natural images. Car Image Scissors Image
  26. 26. A Bayesian Compressive Sensing  AlgorithmAn empirical Bayesian formulation is used, inference is based on an approximation of the posterior distribution.We assume Gaussian noise; the forward model is given by: μ ¶ N=2 ¯ p (yjx; ¯) = ¯ exp ¡ ky ¡ ©xk2 2Due to the ill‐posedness of the inverse problem, it is necessary to use a priori information about the unknown image x. In CS, a requirement for successful reconstruction is that the signal is compressible in some basis, i.e., a basis exists in which the signal can be well represented using a small number of non‐zero coefficients.
  27. 27. A Bayesian Compressive Sensing  Algorithm For images, high spatial frequencies are represented by edges. Hence, it can be assumed that the output of a high pass filter is sparse. This knowledge is modeled using the following image prior: L Ã L ! X 1 Xp(xjA) / j DT ADk j¡1=2 exp ¡ k xT DT ADk x k 2 k=1 k=1 Dk: High frequency filter matrices (2 horizontal, 2 vertical, 2 diagonal) A: Diagonal covariance matrix with a variance parameter for each pixel: A = diag (®i ) i = 1; : : : ; N Following a fully Bayesian approach, we assign gamma priors to the  ¯ ;® hyperparameters:            i
  28. 28. A Bayesian Compressive Sensing  Algorithm We use the evidence procedure and approximate the posterior by  xxxxx p (x; A; ¯jy) = p (xjy; A; ¯) p (A; ¯jy) The first distribution is found to be Gaussian: p (xjy; A; ¯) = N (xj¹x ; §x ) N X ¹x = §x ¯©T y §¡1 = ¯©T © + x Dk ADk k=1 We can also maximize                                             y) with respect to       and     p (A; ¯jy) / p (A; ¯; A A¯ ; the maximizer for       is given by: 1+ 2(a0 ¡ 1) Xh L ¡ ¢ i ®i = ® vi = (Dk ¹x )2 + DT Dk §x i k ii vi + 2b0 ® k=1
  29. 29. Reconstruction Results – Comparison Comparison with state of the art algorithm that solves the min‐TV problem with  quadratic constraints:  subject to  Original ImageBayesian 10% 30% 50% 70% 90%min-TV 10% 30% 50% 70% 90%
  30. 30. Reconstruction Results – ComparisonComparison with state of the art algorithm that solves the min‐TV problem with quadratic constraints:  subject to 
  31. 31. Results – Algorithm Comparison Reconstruction Comparison (Gaussian) Reconstruction Comparison (Binary) 40 40 Proposed Bayesian Method 38 Bayesian TVAL3 PSNR range between experiments TVAL3 35 36 l1MAGIC 34 NESTA 30 32PSNR 30 25 28 26 20 24 22 15 20 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 #Measurements/#Pixels #Measurements/#Pixels The proposed method outperforms the others. It is more robust to measurement matrix selection. 
  32. 32. MSE Comparison PSNR Comparison 40 Bayesian (eq - spaced) Bayesian (random) - mean of 10 experiments TVAL3 (random) - mean of 10 experiments 35 30PSNR 25 20 15 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 #Measurements/#Pixels
  33. 33. Sparse Representation for Video  Indexing and Retrieval
  34. 34. Motivation – QBE Case Content Provider Video DB Network Located full size program Query by Example from a 5-sec QCIF video HighlightsMobile TV Set
  35. 35. Luminance Field Trace (LUFT) PCA + scale • Scaling to a common spatial scale, 101 201 for example,11x9 for noise reduction 1 and handling frame size variation 301 • PCA to identify the trace residing subspace in R11x9. “foreman” seq in 2D (1st and 2nd component) PCA spaceL. Gao, Z. Li, and A.K. Katsaggelos, "An Efficient Video Indexing and Retrieval Algorithm using the Luminance Field," IEEE Trans. Circuits and Systems for Video Technology, vol. 19, issue 10, 1566‐1570, Oct. 2009. 
  36. 36. Video Trace Examplesvideo as trace in PCA space with 1st,2nd and 3rd components •“foreman” : 400 40 frames 30 •“stefan” : 300 frames 20 •“mother-daughter”: 10 300 frames 0 •“mixed”: 40 shots of -10 60 frames each from -20 40 randomly selected 20 200 250 sequences. 0 150 -20 100 50 -40 0 . “foreman” . “stefan” . “mother-daughter” . “mixed”
  37. 37. Indexing Scheme• For large video  collections,  exhaustive  search is not  efficient • Need to have  efficient  Query clip indexing  Example of video traces of scheme  50K frames from TRECVID
  38. 38. Top‐down Iterative Data  Partition Scheme • Project data to the axis with the largest variance • Split into Left and Right sets at median value  • Store cutting plane index and median value, as well as Min Bounding  Box (MBB) at each node (x2, v1) R2 (x1, v2) R4 (x1, v2) (x1, v3) (x1, v3) R1 R3 R1 R2 R3 R4 (x2, v1) Kd-Tree: L=2• At retrieval time, query clip is traversing the tree by MBB intersections and  splits
  39. 39. Indexing Scheme • Example: luma space trace partition: L=12, d=2 600 – For 5 hours of video from  500 400 NIST TRECVID 300 – An index tree of 12 levels,  200 and 4096 leaf nodes level  MBBs are plotted. Each x2 100 0 −100 node has about 132  −200 frames −300 – Indexing space dimension  −400 0 200 400 600 800 x1 1000 1200 1400 1600 shown d=2 – Time to build this index: 530 sec on an 2.4GHz Celeron/256M  RAM Laptop in Matlab (not bad at all). 
  40. 40. Query Clip Example• A positive query example – Query clip is localized  with a subset of leaf  nodes – Then the query clip is  matched
  41. 41. Sparse Representation• Video Query • Database Ordering • Problem FormulationP. Ruiz et al, “Video Retrieval using Sparse Bayesian Reconstruction”, ICME, July 2011.
  42. 42. Bayesian Formulation• Joint distribution• Noise Model• Hierarchical Laplace prior on x S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Bayesian Compressive Sensing using Laplace Prors,"  IEEE Transactions on Image Processing, vol. 19, issue 1, 53‐64, January 2010. 
  43. 43. Retrieval Algorithm• Gaussian• Hyperparameter estimation• Also greedy solution approach
  44. 44. Experimental Results
  45. 45. Experimental Results
  46. 46. Recommender Systems• E‐commerce leaders have made recommender systems a salient part of their websites• RS are based on two strategies: content‐filtering and collaborative  filtering• Content‐filtering approaches build product and user profiles which are  associated by programs; they rely on external information that may not be  available or easy to collect• Collaborative filtering relies on past user behavior; it is domain free but  suffers from the cold start problem (inability to address the system’s new  products and users)• Collaborative filtering is classified into neighborhood methods and latent  factor models• Some of the most successful realizations of latent factor models are based  on matrix factorization
  47. 47. User‐Oriented NeighborhoodY. Koren, R Bell, C. Volinsky, “Matrix Factorization Techniques for Recommender Systems, Computer, pp. 42‐49, Aug. 2009.
  48. 48. Latent Factor Approach
  49. 49. Matrix Factorization and  Completion• Old problem• Numerous applications – Tracking and geolocation – Inpainting – System Identification – Sensor Networks
  50. 50. Estimation of Low‐Rank Matrices• General Problem minimize rank(X) subject to Y = f (X):• Solution Approaches minimize kXk¤ subject to Y = f (X); • or minimize kXk¤ subject to k Y ¡ f (X) k2 < ²; F
  51. 51. Low‐Rank Modeling • Parameterization of the unknown X = ABTwhere A is m £ r B is n £ r rank(X) = r · min(m; n)• Problem formulation minimize k A k2 + k B k2 F F 2 < ²: subject to k Y ¡ f (X) kF
  52. 52. Bayesian Formulation • Sum of outer products k X X = ABT = a¢i b¢i T i=1 • Achieve column sparsity in A and B, through prior modeling k Y p(Aj°) = N (a¢i j0; °i I) i=1 k Y p(Bj° ) = N (b¢i j0; °i I)] i=1D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, Sparse Bayesian Methods for Low-Rank MatrixEstimation, to appear, IEEE Trans. on Signal Processing (also ICASSP 2011).
  53. 53. Bayesian Formulation (cont’ed) • Alternatively μ ¶ Ã k ! 1 T 1 X ¡1 2p(Aj° ) / exp ¡ Tr(A ¡A) = exp ¡ °i ¾A;i ; 2 2 i=1 μ ¶ Ã k ! 1 T 1 X ¡1 2p(Bj° ) / exp ¡ Tr(B ¡B) = exp ¡ °i ¾B;i ; 2 2 i=1 • Gamma Hyperprior on the variances μ ¶a+1 μ ¶ 1 b p(°i ) / exp ¡ : °i °i
  54. 54. Matrix Completion Problem• Observation Model Yij = Xij + Nij ; (i; j) 2 Ð, Y = PÐ (X + N) ;• Noise Model Y ¡ ¢ ¡1 p(YjA; B; ¯) = N Yij jXij ; ¯ ; (i;j)2Е Joint Distribution p(Y; A; B; ° ; ¯) = p(YjA; B; ¯) p(Aj° ) p(Bj° )p(° ) p(¯) :
  55. 55. Bayesian Inference• Latent variables z = (A; B; °; ¯)• Posterior of each latent variable log q(zk ) = h log p(Y; z)iznzk + const;
  56. 56. Estimation of A• Posterior of the i‐th row of Aq(ai¢ ) = N (ai¢ jhai¢ i; §a ) ; i T ¡ ¢¡1hai¢ i = h¯i §a hBi iT i T yi¢ ; §a i = h¯i hBT Bi i i +¡ X X ³ ´hBT Bi i i = hbj¢ T bj¢ i = hbj¢ T ihbj¢ i + §b ; j j:(i;j)2Ð j:(i;j)2Ð
  57. 57. Estimation of B• Posterior of the j‐th row of B ³ ´ q(bj¢ ) = N bj¢ jhbj¢ i; §b j T T ¡ ¢¡1hbj¢ i = h¯i §b j hAj i y¢j ; §b j = h¯i hAT Aj i j +¡ ;
  58. 58. Estimation of hyperparameters μ ¶a+1+ m+n μ T a i + hb T b i ¶ 1 2 2b + ha¢i ¢i ¢i ¢iq(°i ) / exp ¡ °i 2°i 2b + ha¢i T a¢i i + hb¢i T b¢i i h°i i = : 2a + m + n T X¡ ¢ Tha¢i a¢i i = ha¢i i ha¢i i + §a ii ; j j X³ ´hb¢i T b¢i i = hb¢i iT hb¢i i + §b j : ii j pmnh¯i = T ) k2 i : h k Y ¡ PÐ (AB F
  59. 59. Experimental Results
  60. 60. Experimental Results
  61. 61. Robust PCA • Observation Model Y =X+E+N • Noise Model μ ¶ ¡ T ¡1 ¢ ¯ p(YjA; B; E; ¯) = N YjAB + E; ¯ I / exp k Y ¡ ABT ¡ E k2 F 2 m n YY ³ ´ p(Ej®) = N Eij j0; ®¡1 ; ij i=1 j=1 p(®ij ) = const; 8i; j : • Joint Distributionp(Y; A; B; E; °; ®; ¯) = p(YjA; B; E; ¯) p(Aj°) p(Bj°) p(Ej®) p(°) p(®) p(¯)
  62. 62. Estimation of E ¡ E ¢q(Eij ) = N Eij jhEij i; §ij ;hEij i = h¯i §E (Yij ¡ hai¢ ihbj¢ iT ) ; ij 1§E = ij : h¯i + h®ij i
  63. 63. Experimental Results
  64. 64. Experimental Results
  65. 65. Experimental Results
  66. 66. Experimental Results
  67. 67. Final Comments • Sparsity is a new and powerful concept for a  number of image processing, computer vision,  pattern recognition, machine learning, and  communication problems• In most cases, large amounts of scale/data  problems are encountered and improved  computational approaches are needed• Advances on both theoretical and application  fronts
  68. 68. Current Collaborators• University of Granada – Prof. Rafael Molina – Prof. Javier Mateos – Publo Ruiz, PhD student• Northwestern University – Derin Babacan, ex‐PhD student, UIUC – Zhu Li, ex‐PhD student, Huawei – Li Gao, PhD student – Bruno Azimic, PhD student – Martin Luessi, ex‐PhD student, Harvard Medical – Leonidas Spinoulas, PhD student – Michael Iliadis, PhD student