Integrated Math 2 Sections 2-7 and 2-8

1,879 views

Published on

Properties of Exponents and Zero and Negative Exponents

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,879
On SlideShare
0
From Embeds
0
Number of Embeds
18
Actions
Shares
0
Downloads
34
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Integrated Math 2 Sections 2-7 and 2-8

  1. 1. SECTIONS 2-7 AND 2-8 Properties of Exponents and Zero and Negative Exponents
  2. 2. ESSENTIAL QUESTIONS How do you choose appropriate units of measure? How do you evaluate variable expressions? How do you write numbers using zero and negative integers as exponents? How do you write numbers in scientific notation? Where you’ll see this: Biology, finance, computers, population, physics, astronomy
  3. 3. VOCABULARY 1. Exponential Form: 2. Base: 3. Exponent: 4. Standard Form: 5. Scientific Notation:
  4. 4. VOCABULARY 1. Exponential Form: The form you use to represent multiplying a number by itself numerous times 2. Base: 3. Exponent: 4. Standard Form: 5. Scientific Notation:
  5. 5. VOCABULARY 1. Exponential Form: The form you use to represent multiplying a number by itself numerous times 2. Base: The number that is being multiplied over and over 3. Exponent: 4. Standard Form: 5. Scientific Notation:
  6. 6. VOCABULARY 1. Exponential Form: The form you use to represent multiplying a number by itself numerous times 2. Base: The number that is being multiplied over and over 3. Exponent: The number of times we multiply the base 4. Standard Form: 5. Scientific Notation:
  7. 7. VOCABULARY 1. Exponential Form: The form you use to represent multiplying a number by itself numerous times 2. Base: The number that is being multiplied over and over 3. Exponent: The number of times we multiply the base 4. Standard Form: Any number in decimal form 5. Scientific Notation:
  8. 8. VOCABULARY 1. Exponential Form: The form you use to represent multiplying a number by itself numerous times 2. Base: The number that is being multiplied over and over 3. Exponent: The number of times we multiply the base 4. Standard Form: Any number in decimal form 5. Scientific Notation: A number with two factors, where the first factor is a number ≥ 1 and < 10, and the second is a power of 10.
  9. 9. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  10. 10. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  11. 11. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  12. 12. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  13. 13. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  14. 14. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  15. 15. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: The number of organisms doubles Sixth hour: Seventh hour: Eighth hour: How long until there are 2000?
  16. 16. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: The number of organisms doubles Sixth hour: 64 Seventh hour: Eighth hour: How long until there are 2000?
  17. 17. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: The number of organisms doubles Sixth hour: 64 Seventh hour: 128 Eighth hour: How long until there are 2000?
  18. 18. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: The number of organisms doubles Sixth hour: 64 Seventh hour: 128 Eighth hour: 256 How long until there are 2000?
  19. 19. ACTIVITY: PAGE 82 Hours 1 2 3 4 5 # of 2 4 8 16 32 organisms Pattern: The number of organisms doubles Sixth hour: 64 Seventh hour: 128 Eighth hour: 256 How long until there are 2000? 11th hour
  20. 20. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y
  21. 21. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2
  22. 22. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = 3(.64)(1.2)
  23. 23. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = 3(.64)(1.2) = 2.304
  24. 24. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = [4(.8)] (1.2) 3 2 = 3(.64)(1.2) = 2.304
  25. 25. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = [4(.8)] (1.2) 3 2 = 3(.64)(1.2) = (3.2) (1.2) 3 2 = 2.304
  26. 26. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = [4(.8)] (1.2) 3 2 = 3(.64)(1.2) = (3.2) (1.2) 3 2 = 2.304 = (32.768)(1.44)
  27. 27. EXAMPLE 1 Evaluate for x = .8 and y = 1.2. 2 3 2 a. 3x y b. (4x) y = 3(.8) (1.2) 2 = [4(.8)] (1.2) 3 2 = 3(.64)(1.2) = (3.2) (1.2) 3 2 = 2.304 = (32.768)(1.44) = 47.18592
  28. 28. PRODUCT RULE b ib = b m n m+n
  29. 29. PRODUCT RULE b ib = b m n m+n x ix = 3 5
  30. 30. PRODUCT RULE b ib = b m n m+n x ix = xixix 3 5
  31. 31. PRODUCT RULE b ib = b m n m+n x ix = xixix ixixixixix 3 5
  32. 32. PRODUCT RULE b ib = b m n m+n x ix = xixix ixixixixix = x 3 5 8
  33. 33. POWER RULE (b ) = b m n mn
  34. 34. POWER RULE (b ) = b m n mn 2 3 (y )
  35. 35. POWER RULE (b ) = b m n mn (y ) = y iy iy 2 3 2 2 2
  36. 36. POWER RULE (b ) = b m n mn (y ) = y iy iy = y 2 3 2 2 2 6
  37. 37. POWER OF A PRODUCT RULE (ab) = a b m m m
  38. 38. POWER OF A PRODUCT RULE (ab) = a b m m m 4 (gf )
  39. 39. POWER OF A PRODUCT RULE (ab) = a b m m m (gf ) = gf igf igf igf 4
  40. 40. POWER OF A PRODUCT RULE (ab) = a b m m m (gf ) = gf igf igf igf = g f 4 4 4
  41. 41. QUOTIENT RULE m b b ÷b = n =b m n m−n b
  42. 42. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c 3 c
  43. 43. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c cicicicic 3 = c cicic
  44. 44. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c cicicicic 3 = c cicic
  45. 45. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c cicicicic 3 = c cicic
  46. 46. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c cicicicic 3 = c cicic
  47. 47. QUOTIENT RULE m b b ÷b = n =b m n m−n b 5 c cicicicic 3 = =c 2 c cicic
  48. 48. POWER OF A QUOTIENT RULE m ⎛ a⎞ m a ⎜ b ⎟ = bm ⎝ ⎠
  49. 49. POWER OF A QUOTIENT RULE m ⎛ a⎞ m a ⎜ b ⎟ = bm ⎝ ⎠ 3 ⎛ d⎞ ⎜ w⎟ ⎝ ⎠
  50. 50. POWER OF A QUOTIENT RULE m ⎛ a⎞ m a ⎜ b ⎟ = bm ⎝ ⎠ 3 ⎛ d⎞ d d d ⎜ w⎟ = wiwiw ⎝ ⎠
  51. 51. POWER OF A QUOTIENT RULE m ⎛ a⎞ a m ⎜ b ⎟ = bm ⎝ ⎠ 3 ⎛ d⎞ d d d d 3 ⎜ w ⎟ = w i w i w = w3 ⎝ ⎠
  52. 52. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m )
  53. 53. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m ) =3 2+ 5
  54. 54. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m ) =3 2+ 5 =3 7
  55. 55. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m ) =3 2+ 5 =3 7 = 2187
  56. 56. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m ) =3 2+ 5 =6 m 2 4( 2) =3 7 = 2187
  57. 57. EXAMPLE 2 Simplify. 2 5 4 2 a. 3 i3 b. (6m ) =3 2+ 5 =6 m 2 4( 2) =3 7 = 36m 8 = 2187
  58. 58. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y
  59. 59. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( 2)() 1 2 2 3
  60. 60. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() 1 2 2 2 3 = ( )( ) 1 4 2 3
  61. 61. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() 1 2 2 2 3 = ( )( ) 1 4 2 3 = 2 12
  62. 62. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() 1 2 2 2 3 = ( )( ) 1 4 2 3 = 2 12 = 1 6
  63. 63. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() = 3( )() 1 2 2 3 2 1 2 2 3 2 3 = ( )( ) 1 4 2 3 = 2 12 = 1 6
  64. 64. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() = 3( )() 1 2 2 3 2 1 2 2 3 2 3 = ( )( ) 1 4 2 3 = 3 ( )( ) 1 8 4 9 = 2 12 = 1 6
  65. 65. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() = 3( )() 1 2 2 3 2 1 2 2 3 2 3 = ( )( ) 1 4 2 3 = 3 ( )( ) 1 8 4 9 = 2 12 = 3( 4 72 ) = 1 6
  66. 66. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() = 3( )() 1 2 2 3 2 1 2 2 3 2 3 = ( )( ) 1 4 2 3 = 3 ( )( )1 8 4 9 = 2 12 = 3( 4 72 ) = 1 6 = 12 72
  67. 67. EXAMPLE 3 Evaluate for x = 1/2 and y = 2/3. 2 3 2 a. x y b. 3x y =( )() = 3( )() 1 2 2 3 2 1 2 2 3 2 3 = ( )( ) 1 4 2 3 = 3 ( )( )1 8 4 9 = 2 12 = 3( 4 72 ) = 1 6 = 12 72 = 1 6
  68. 68. ZERO PROPERTY OF EXPONENTS b =1 0
  69. 69. ZERO PROPERTY OF EXPONENTS b =1 0 4 x 4 x
  70. 70. ZERO PROPERTY OF EXPONENTS b =1 0 4 x 4− 4 4 = x x
  71. 71. ZERO PROPERTY OF EXPONENTS b =1 0 4 x 4− 4 4 = x =x 0 x
  72. 72. ZERO PROPERTY OF EXPONENTS b =1 0 4 x 4− 4 4 = x =x 0 x 4 x 4 x
  73. 73. ZERO PROPERTY OF EXPONENTS b =1 0 4 x 4− 4 4 = x =x 0 x 4 x 4 =1 x
  74. 74. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b
  75. 75. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h 7 h
  76. 76. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h 7 = h 3−7 h
  77. 77. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h −4 7 = h =h 3−7 h
  78. 78. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h −4 7 = h =h 3−7 h 3 h 7 h
  79. 79. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h −4 7 = h =h 3−7 h 3 h hihih 7 = h hihihihihihih
  80. 80. PROPERTY OF NEGATIVE EXPONENTS 1 b −m = m b 3 h −4 7 = h =h 3−7 h 3 h hihih 1 7 = = 4 h hihihihihihih h
  81. 81. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y
  82. 82. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y =x 2− 8
  83. 83. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y =x 2− 8 −6 =x
  84. 84. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y =x 2− 8 −6 =x 1 = 6 x
  85. 85. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y 3 y =x 2− 8 = 4 y −6 =x 1 = 6 x
  86. 86. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y 3 y =x 2− 8 = 4 y −6 =x =y −1 1 = 6 x
  87. 87. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y 3 y =x 2− 8 = 4 y −6 =x =y −1 1 1 = 6 = x y
  88. 88. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y 3 −6 =x 2− 8 = 4 y =z y −6 =x =y −1 1 1 = 6 = x y
  89. 89. EXAMPLE 4 Simplify each expression. Write the answer with a positive exponent. 2 x 1 a. 8 3 b. y i 4 −3 2 x c. (z ) y 3 −6 =x 2− 8 = 4 y =z y =x −6 1 =y −1 = 6 1 1 z = 6 = x y
  90. 90. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n
  91. 91. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n = 6(−2) 4
  92. 92. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n = 6(−2) 4 = 6(16)
  93. 93. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n = 6(−2) 4 = 6(16) = 96
  94. 94. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 = 6(−2) 4 =n = 6(16) = 96
  95. 95. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 = 6(−2) 4 =n = 6(16) 1 = 6 n = 96
  96. 96. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 = 6(−2) 4 =n = 6(16) 1 = 6 n = 96 1 = 6 4
  97. 97. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 = 6(−2) 4 =n = 6(16) 1 = 6 n = 96 1 1 = 6 = 4 4096
  98. 98. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 −3 = 6(−2) 4 =n = (−2) (4) 5 = 6(16) 1 = 6 n = 96 1 1 = 6 = 4 4096
  99. 99. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 −3 = 6(−2) 4 =n = (−2) (4) 5 = 6(16) 1 (−2) 5 = 6 = 3 n (4) = 96 1 1 = 6 = 4 4096
  100. 100. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 −3 = 6(−2) 4 =n = (−2) (4) 5 = 6(16) 1 (−2) 5 = 6 = 3 n (4) = 96 1 1 −32 = 6 = = 4 4096 64
  101. 101. EXAMPLE 5 Evaluate each expression when m = -2 and n = 4. 4 3 −2 5 −3 a. 6m b. (n ) c. m n −6 −3 = 6(−2) 4 =n = (−2) (4) 5 = 6(16) 1 (−2) 5 = 6 = 3 n (4) = 96 1 1 −32 −1 = 6 = = = 4 4096 64 2
  102. 102. EXAMPLE 6 Write in scientific notation. a. .0000013 b. 230,000,000,000
  103. 103. EXAMPLE 6 Write in scientific notation. a. .0000013 b. 230,000,000,000 -6 =1.3i10
  104. 104. EXAMPLE 6 Write in scientific notation. a. .0000013 b. 230,000,000,000 -6 11 =1.3i10 =2.3i10
  105. 105. EXAMPLE 7 Write in standard form. 6 −9 a. 7.2i10 b. 3.5i10
  106. 106. EXAMPLE 7 Write in standard form. 6 −9 a. 7.2i10 b. 3.5i10 = 7, 200,000
  107. 107. EXAMPLE 7 Write in standard form. 6 −9 a. 7.2i10 b. 3.5i10 = 7, 200,000 = .0000000035
  108. 108. EXAMPLE 8 −24 The mass of one hydrogen atom is 1.67i10 grams. Find the mass of 2,700,000,000,000,000 hydrogen atoms.
  109. 109. EXAMPLE 8 −24 The mass of one hydrogen atom is 1.67i10 grams. Find the mass of 2,700,000,000,000,000 hydrogen atoms. −24 15 (1.67i10 )(2.7i10 )
  110. 110. EXAMPLE 8 −24 The mass of one hydrogen atom is 1.67i10 grams. Find the mass of 2,700,000,000,000,000 hydrogen atoms. −24 15 (1.67i10 )(2.7i10 ) −24 = (1.67i2.7)(10 i10 15 )
  111. 111. EXAMPLE 8 −24 The mass of one hydrogen atom is 1.67i10 grams. Find the mass of 2,700,000,000,000,000 hydrogen atoms. −24 15 (1.67i10 )(2.7i10 ) −24 = (1.67i2.7)(10 i10 15 ) −9 = 4.509i10
  112. 112. EXAMPLE 8 −24 The mass of one hydrogen atom is 1.67i10 grams. Find the mass of 2,700,000,000,000,000 hydrogen atoms. −24 15 (1.67i10 )(2.7i10 ) −24 = (1.67i2.7)(10 i10 15 ) −9 = 4.509i10 = .000000004509 gram
  113. 113. HOMEWORK
  114. 114. HOMEWORK p. 84 #1-48 multiples of 3; p. 88 #1-48 multiples of 3 “When you’re screwing up and nobody’s saying anything to you anymore, that means they gave up [on you]...When you see yourself doing something badly and nobody’s bothering to tell you anymore, that’s a very bad place to be. Your critics are the ones who are telling you they still love and care.” - Randy Pausch

×