Int Math 2 Section 2-5 1011

812 views

Published on

Multiply and divide variable expressions

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
812
On SlideShare
0
From Embeds
0
Number of Embeds
269
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Int Math 2 Section 2-5 1011

  1. 1. Section 2-5 Multiply and Divide Variable Expressions
  2. 2. Essential Questions How are variable expressions simplified? How are variable expressions evaluated? Where you’ll see this: Part-time job, weather, engineering, spreadsheets
  3. 3. Vocabulary 1. Property of the Opposite of a Sum: 2. Distributive Property:
  4. 4. Vocabulary 1. Property of the Opposite of a Sum: The negative outside the parentheses makes everything inside it opposite 2. Distributive Property:
  5. 5. Vocabulary 1. Property of the Opposite of a Sum: The negative outside the parentheses makes everything inside it opposite 2. Distributive Property: Multiply each term inside the parentheses by the term outside
  6. 6. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) c. -(2ab + 9ac) d. 2x(4 x + 7y )
  7. 7. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) c. -(2ab + 9ac) d. 2x(4 x + 7y )
  8. 8. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n c. -(2ab + 9ac) d. 2x(4 x + 7y )
  9. 9. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n c. -(2ab + 9ac) d. 2x(4 x + 7y )
  10. 10. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  11. 11. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  12. 12. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x c. -(2ab + 9ac) d. 2x(4 x + 7y )
  13. 13. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x c. -(2ab + 9ac) d. 2x(4 x + 7y )
  14. 14. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  15. 15. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y )
  16. 16. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab
  17. 17. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab
  18. 18. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac
  19. 19. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac
  20. 20. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8x 2
  21. 21. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8x 2
  22. 22. Example 1 Simplify. a. − 2(n − 5) b. .3( x + .7) −2n +10 .3x +.21 c. -(2ab + 9ac) d. 2x(4 x + 7y ) −2ab −9ac 8 x +14 xy 2
  23. 23. Dividing Variable Expressions
  24. 24. Dividing Variable Expressions Divide each term in numerator by denominator
  25. 25. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution
  26. 26. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 2
  27. 27. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 2 2 1
  28. 28. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1
  29. 29. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1 3 2 − x 1 2
  30. 30. Dividing Variable Expressions Divide each term in numerator by denominator Rewrite as distribution 3− x 1 3− x i 1 2 (3 − x) 2 2 1 3 2 − x 1 2 − x+ 1 2 3 2
  31. 31. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2
  32. 32. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 3 3
  33. 33. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 3 3 2x + 1
  34. 34. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 1 2 (10 y − 5) 3 3 2x + 1
  35. 35. Example 2 Simplify. Practice both methods of division to see which one you prefer. 6x + 3 10 y − 5 a. b. 3 2 6x 3 + 1 2 (10 y − 5) 3 3 2x + 1 5y − 5 2
  36. 36. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7
  37. 37. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8
  38. 38. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8 −.2 + .1z
  39. 39. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − −8 −8 −.2 + .1z .1z − .2
  40. 40. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − 1 (9 x + 5 y ) −8 −8 7 −.2 + .1z .1z − .2
  41. 41. Example 2 Simplify. Practice both methods of division to see which one you prefer. 1.6 − .8 z 9x + 5y c. d. −8 7 1.6 .8 z − 1 (9 x + 5 y ) −8 −8 7 −.2 + .1z 9 x+ y 5 .1z − .2 7 7
  42. 42. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y
  43. 43. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2
  44. 44. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2
  45. 45. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3
  46. 46. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3 −12 − 3
  47. 47. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −3(2) − 3 2 −3(4) − 3 −12 − 3 −15
  48. 48. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −3(4) − 3 −12 − 3 −15
  49. 49. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −12 − 3 −15
  50. 50. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −15
  51. 51. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −4(10) −15
  52. 52. Example 3 Evaluate when x = 2 and y = -4. a. − 3( x + 1) 2 b. − 4 6 − y −3x − 3 2 −4 6 − (−4) −3(2) − 3 2 −4 6 + 4 −3(4) − 3 −4 10 −12 − 3 −4(10) −15 −40
  53. 53. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y
  54. 54. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y −4 − 2 2 − (−4)
  55. 55. Example 3 Evaluate when x = 2 and y = -4. y-x c. x-y −4 − 2 2 − (−4) −6 6
  56. 56. Example 3 Evaluate when x = 2 and y = -4. y-x c. 6 x-y 6 −4 − 2 2 − (−4) −6 6
  57. 57. Example 3 Evaluate when x = 2 and y = -4. y-x c. 6 x-y 6 −4 − 2 2 − (−4) 1 −6 6
  58. 58. Problem Set
  59. 59. Problem Set p. 74 #1-47 odd “Nobody got anywhere in the world by simply being content.” - Louis L'Amour

×