Geometry section 4-1 1112

1,666 views

Published on

Classifying Triangles

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,666
On SlideShare
0
From Embeds
0
Number of Embeds
1,094
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Geometry section 4-1 1112

    1. 1. Chapter 4 Congruent TrianglesMonday, January 30, 2012
    2. 2. Section 4-1 Classifying TrianglesMonday, January 30, 2012
    3. 3. Essential Questions How do you identify and classify triangles by angle measures? How do you identify and classify triangles by side measures?Monday, January 30, 2012
    4. 4. Vocabulary 1. Acute Triangle: 2. Equiangular Triangle: 3. Obtuse Triangle: 4. Right Triangle: 5. Equilateral Triangle:Monday, January 30, 2012
    5. 5. Vocabulary 1. Acute Triangle: A triangle in which all three angles have a measure of less than 90 degrees 2. Equiangular Triangle: 3. Obtuse Triangle: 4. Right Triangle: 5. Equilateral Triangle:Monday, January 30, 2012
    6. 6. Vocabulary 1. Acute Triangle: A triangle in which all three angles have a measure of less than 90 degrees 2. Equiangular Triangle: A triangle in which all three angles have a measure of 60 degrees, thus making them all equal 3. Obtuse Triangle: 4. Right Triangle: 5. Equilateral Triangle:Monday, January 30, 2012
    7. 7. Vocabulary 1. Acute Triangle: A triangle in which all three angles have a measure of less than 90 degrees 2. Equiangular Triangle: A triangle in which all three angles have a measure of 60 degrees, thus making them all equal 3. Obtuse Triangle: A triangle in which one of the angles has a measure greater than 90 degrees 4. Right Triangle: 5. Equilateral Triangle:Monday, January 30, 2012
    8. 8. Vocabulary 1. Acute Triangle: A triangle in which all three angles have a measure of less than 90 degrees 2. Equiangular Triangle: A triangle in which all three angles have a measure of 60 degrees, thus making them all equal 3. Obtuse Triangle: A triangle in which one of the angles has a measure greater than 90 degrees 4. Right Triangle: A triangle in which one of the angles has a measure of 90 degrees 5. Equilateral Triangle:Monday, January 30, 2012
    9. 9. Vocabulary 1. Acute Triangle: A triangle in which all three angles have a measure of less than 90 degrees 2. Equiangular Triangle: A triangle in which all three angles have a measure of 60 degrees, thus making them all equal 3. Obtuse Triangle: A triangle in which one of the angles has a measure greater than 90 degrees 4. Right Triangle: A triangle in which one of the angles has a measure of 90 degrees 5. Equilateral Triangle: A triangle in which all three sides have the same measureMonday, January 30, 2012
    10. 10. Vocabulary 6. Isosceles Triangle: 7. Scalene Triangle:Monday, January 30, 2012
    11. 11. Vocabulary 6. Isosceles Triangle: A triangle in which at least two sides have the same measure 7. Scalene Triangle:Monday, January 30, 2012
    12. 12. Vocabulary 6. Isosceles Triangle: A triangle in which at least two sides have the same measure 7. Scalene Triangle: A triangle in which no two sides have the same measureMonday, January 30, 2012
    13. 13. Example 1 Classify each triangle as acute, equiangular, obtuse, or right. a. b.Monday, January 30, 2012
    14. 14. Example 1 Classify each triangle as acute, equiangular, obtuse, or right. a. b. EquiangularMonday, January 30, 2012
    15. 15. Example 1 Classify each triangle as acute, equiangular, obtuse, or right. a. b. Equiangular ObtuseMonday, January 30, 2012
    16. 16. Example 2 Classify ∆XYZ as acute, equiangular, obtuse, or right. Explain your reasoning.Monday, January 30, 2012
    17. 17. Example 2 Classify ∆XYZ as acute, equiangular, obtuse, or right. Explain your reasoning. RightMonday, January 30, 2012
    18. 18. Example 2 Classify ∆XYZ as acute, equiangular, obtuse, or right. Explain your reasoning. Right m∠XYW + m∠WYZMonday, January 30, 2012
    19. 19. Example 2 Classify ∆XYZ as acute, equiangular, obtuse, or right. Explain your reasoning. Right m∠XYW + m∠WYZ = 40°+50° = 90°Monday, January 30, 2012
    20. 20. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale.Monday, January 30, 2012
    21. 21. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuseMonday, January 30, 2012
    22. 22. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuse m∠JNM > 90°Monday, January 30, 2012
    23. 23. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuse m∠JNM > 90° JKO is rightMonday, January 30, 2012
    24. 24. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuse m∠JNM > 90° JKO is right m∠JKO = 90°Monday, January 30, 2012
    25. 25. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuse m∠JNM > 90° JKO is right OLN is equiangular m∠JKO = 90°Monday, January 30, 2012
    26. 26. Example 3 The triangular truss is modeled for steel construction. Classify ∆JMN, ∆JKO, and ∆OLN as acute, equiangular, obtuse, or right. Explain your reasoning. This figure is drawn to scale. JMN is obtuse m∠JNM > 90° JKO is right OLN is equiangular m∠JKO = 90° All 3 angles have the same measureMonday, January 30, 2012
    27. 27. Example 4 If point Y is the midpoint of VX and WY = 3 in., classify ∆VWY as equilateral, isosceles, or scalene. Explain your reasoning.Monday, January 30, 2012
    28. 28. Example 4 If point Y is the midpoint of VX and WY = 3 in., classify ∆VWY as equilateral, isosceles, or scalene. Explain your reasoning. ∆VWY is scalene. Since Y is the midpoint of VX, we know that VY = YX = .5(VX) = 4.2 in. Along with the fact that WY = 3 in., we know all three sides of ∆VWY have different measures, thus making ∆VWY a scalene triangle.Monday, January 30, 2012
    29. 29. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL.Monday, January 30, 2012
    30. 30. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MKMonday, January 30, 2012
    31. 31. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13Monday, January 30, 2012
    32. 32. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5dMonday, January 30, 2012
    33. 33. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5Monday, January 30, 2012
    34. 34. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − dMonday, January 30, 2012
    35. 35. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d ML =12 −5Monday, January 30, 2012
    36. 36. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d ML =12 −5 ML = 7 unitsMonday, January 30, 2012
    37. 37. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 ML =12 −5 ML = 7 unitsMonday, January 30, 2012
    38. 38. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 ML =12 −5 MK = 4(5)−13 ML = 7 unitsMonday, January 30, 2012
    39. 39. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 ML =12 −5 MK = 4(5)−13 ML = 7 units MK = 20 −13 = 7 unitsMonday, January 30, 2012
    40. 40. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 KL = d + 6 ML =12 −5 MK = 4(5)−13 ML = 7 units MK = 20 −13 = 7 unitsMonday, January 30, 2012
    41. 41. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 KL = d + 6 ML =12 −5 MK = 4(5)−13 KL = 5+ 6 ML = 7 units MK = 20 −13 = 7 unitsMonday, January 30, 2012
    42. 42. Example 5 Find the measure of the sides of isosceles ∆KLM with base KL. ML = MK 12 − d = 4d −13 25 = 5d d =5 ML =12 − d MK = 4d −13 KL = d + 6 ML =12 −5 MK = 4(5)−13 KL = 5+ 6 ML = 7 units MK = 20 −13 = 7 units KL =11 unitsMonday, January 30, 2012
    43. 43. Check Your Understanding Peruse the following problems: p. 238 #1-14Monday, January 30, 2012
    44. 44. Problem SetMonday, January 30, 2012
    45. 45. Problem Set p. 239 #15-51 odd (skip 39), 56, 60, 75 “ Do not listen to those who weep and complain, for their disease is contagious.” - Og MandinoMonday, January 30, 2012

    ×