holmes

421 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
421
On SlideShare
0
From Embeds
0
Number of Embeds
137
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Subset in Burlington, segmented scale 10
  • Same subset in Burlington, segmented scale 40
  • Same subset in Burlington, segmented scale 100
  • Same subset in Burlington, segmented scale 200
  • Aerial photograph 45cm resolution 2005 MassGIS 4 band, eastern Burlington
  • Same aerial, segmented scale 40
  • Land-cover classification
  • holmes

    1. 1. Albert Decatur | Dan Runfola | Nick Giner | Rahul RakshitAdvisors: Prof. Colin Polsky | Prof. Robert Gilmore Pontius, Jr
    2. 2. Research QuestionsHow can we produce a very high resolution land-cover dataset for a large suburban landscape?How are lawns of varying extents spatiallydistributed across the landscape?How can we use virtual globes to assess theaccuracy of the dataset? HOLMES http://sites.google.com/site/heromapmanual/ 2 1
    3. 3. Overall Project Goals Create a land-cover data set for 26 towns in NE Massachusetts Use virtual field work to assess the accuracy of the data Produce land-cover summaries at various geographies (e.g. parcels or census blocks) Develop a tutorial for object-oriented classification of high- resolution imagery Streamline data production by developing automated data processing modelsHOLMES http://sites.google.com/site/heromapmanual/ 3 2
    4. 4. Study Area WorcesterHOLMES http://sites.google.com/site/heromapmanual/ 4 3
    5. 5. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 5 5
    6. 6. HERO Mapping Project http://sites.google.com/site/heromapmanual/ 5
    7. 7. Object-oriented classification methodology ‘05 Aerial Photos Woburn, MAHERO Mapping Project http://sites.google.com/site/heromapmanual/ 6 6
    8. 8. Aerial Object-oriented classification methodology Training Segmentation Sites Classification Edge Aggregation Post Manual Matching and Merging Processing Editing FinalThematic ValidationLayers: Product Impervious•Impervious Sand•Water Water•Wetlands Wetlands Bare Soil Coniferous Deciduous Fine Green/ GrassHERO Mapping Project http://sites.google.com/site/heromapmanual/ 6 6
    9. 9. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 7 7
    10. 10. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 8
    11. 11. 10HOLMES http://sites.google.com/site/heromapmanual/ 9
    12. 12. 40 40HOLMES http://sites.google.com/site/heromapmanual/ 10
    13. 13. 100HOLMES http://sites.google.com/site/heromapmanual/ 11
    14. 14. 200HOLMES http://sites.google.com/site/heromapmanual/ 12
    15. 15. HOLMES http://sites.google.com/site/heromapmanual/ 13 12
    16. 16. HOLMES http://sites.google.com/site/heromapmanual/ 14
    17. 17. HOLMES http://sites.google.com/site/heromapmanual/ 15
    18. 18. OutHOLMES http://sites.google.com/site/heromapmanual/ 16
    19. 19. OutHOLMES http://sites.google.com/site/heromapmanual/ 17
    20. 20. OutHOLMES http://sites.google.com/site/heromapmanual/ 18
    21. 21. OutHOLMES http://sites.google.com/site/heromapmanual/ 19
    22. 22. Out Impervious Water Wetlands Bare Soil Coniferous Deciduous Fine Green/ GrassHOLMES http://sites.google.com/site/heromapmanual/ 19
    23. 23. Data Analysis HOLMES
    24. 24. Percentage Land-cover by TownData Analysis Woburn Ipswich Sand Grass 1% 15% Bare Soil 26% Imperviou Deciduou s s 7% 32% Wetland Coniferou 7% Water s 4% 8% HOLMES HOLMES http://sites.google.com/site/heromapmanual/ 21 20
    25. 25. Percentage Land-cover by Census Block: #44010 All Parcels within Census BlockData Analysis Census Block as a Whole census block parcels selected HOLMES http://sites.google.com/site/heromapmanual/ 22 9
    26. 26. Data Analysis Percentage Land-cover by Parcel: 7 Roman Rd: #710309 9 Roman Rd: #710308 Impervious 11% Impervious 20% Grass Coniferous Grass 44% 24% 48% Coniferous 24% Deciduous Deciduous 17% 12% Images courtesy of Google street view HOLMES http://sites.google.com/site/heromapmanual/ 23 21
    27. 27. AutomationStreamline data preparationand processingReduce manual steps as wellas likelihood of errorSave time and increaseproductivity HOLMES http://sites.google.com/site/heromapmanual/ 24 22
    28. 28. Analysis Model Data Processing ModelsHOLMES http://sites.google.com/site/heromapmanual/ 27 25
    29. 29. Percentage of fine green Per Parcel, Burlington in 2005 (For parcels with fine green category) 900 750Number of Parcels 600 450 300 150 0 0 10 20 30 40 50 60 70 80 90 100 Percentage of fine green HOLMES http://sites.google.com/site/heromapmanual/ 29 27
    30. 30. Validation by virtual fieldwork
    31. 31. Google Earth and Microsoft Virtual EarthBetter Science : Stratified truly randomsampling that is temporally matchingVery IntuitiveSaves time and moneyHOLMES http://sites.google.com/site/heromapmanual/ 30 30
    32. 32. HOLMES http://sites.google.com/site/heromapmanual/ 31 31
    33. 33. HOLMES http://sites.google.com/site/heromapmanual/ 32 32
    34. 34. HOLMES http://sites.google.com/site/heromapmanual/ 33 33
    35. 35. HOLMES http://sites.google.com/site/heromapmanual/ 34 34
    36. 36. HOLMES http://sites.google.com/site/heromapmanual/ 35 35
    37. 37. HOLMES http://sites.google.com/site/heromapmanual/ 37 37
    38. 38. HOLMES http://sites.google.com/site/heromapmanual/ 38 38
    39. 39. HOLMES http://sites.google.com/site/heromapmanual/ 39 39
    40. 40. HOLMES http://sites.google.com/site/heromapmanual/ 40 40
    41. 41. Virtual Fieldwork Land-cover Bare Fine Grand Soil Coniferous Deciduous Green Impervious Water Wetlands Total BareDefiniens Land-cover Soil 34 1 1 1 3 40 Coniferous 37 2 1 40 Deciduous 3 55 2 60 Fine Green 1 1 57 1 60 Impervious 44 44 Water 40 40 Wetlands 40 40 Grand Total 38 39 58 59 50 40 40 324 HOLMES http://sites.google.com/site/heromapmanual/ 45 41
    42. 42. Online Tutorial
    43. 43. Google Analytics Visits
    44. 44. Acknowledgements We sincerely thank: •Prof. Colin Polsky •Prof. Robert Gilmore Pontius Jr. •National Science Foundation •BES (Baltimore) LTER: Jarlath ONeil-Dunne, Weiqi Zhou, & Morgan Grove •MassGIS •Clark University HERO programThis material is based upon work supported by the National Science Foundation under Grant No. 0709685Any opinions, findings, & conclusions or recommendations expressed in this material are those of the author(s) & do not necessarily reflect the views of the National Science Foundation. HOLMES http://sites.google.com/site/heromapmanual/ 46 13

    ×