Semantictaggingforcrowdcomputing<br />Roberto Mirizzi1, Azzurra Ragone1,2, <br />Tommaso Di Noia1, Eugenio Di Sciascio1<br...
Who is using tags?<br />and manymore…<br />
WhynottouseSemantictags?<br />Pluggedinto the Web 3.0<br />Disambiguation<br />Relations amongtags<br />Machineunderstanda...
DBpedia-Ranker: architecture<br />Runtimesearch<br />Offline classification<br />System architecture<br />         Linked ...
DBpedia-Ranker: ranking<br />?r1<br />?r2<br />isSimilar<br />hasValue<br />v<br />
DBpedia-Ranker: contextanalysis<br />The samesimilaritymeasureisused in the contextanalysis<br />C<br />?c1<br />Algorithm...
Evaluation (I)<br />http://sisinflab.poliba.it/evaluation<br />
Evaluation (II)<br />http://sisinflab.poliba.it/evaluation/data<br />
Future work<br /><ul><li>Test ouralgorithmswithdifferentdomains
Extract more fine grainedcontexts
Upcoming SlideShare
Loading in …5
×

Semantic tagging for crowd computing - SEBD 2010

816 views

Published on

The recent blow up of crowd computing initiatives on the web calls for smarter methodologies and tools to annotate, query and explore repositories.
There is the need for scalable techniques able to return also approximate results with respect to a given query as a ranked set of promising alternatives.
In this paper we concentrate on annotation and retrieval of software components, exploiting semantic tagging relying on DBpedia.
We propose a new hybrid methodology to rank resources in this dataset. Inputs of our ranking system are (i) the DBpedia dataset; (ii) external information sources such as classical search engine results, social tagging systems and wikipedia-related information.
We compare our approach with other RDF similarity measures, proving the validity of our algorithm with an extensive evaluation involving real users.
The system is available at http://sisinflab.poliba.it/not-only-tag/

SEBD 2010 - 18th Italian Symposium on Advanced Database Systems

presented by Roberto Mirizzi (http://sisinflab.poliba.it/mirizzi -
roberto.mirizzi -at- gmail.com)

Rimini (ITALY), June 20-23, 2010

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
816
On SlideShare
0
From Embeds
0
Number of Embeds
37
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Semantic tagging for crowd computing - SEBD 2010

  1. 1. Semantictaggingforcrowdcomputing<br />Roberto Mirizzi1, Azzurra Ragone1,2, <br />Tommaso Di Noia1, Eugenio Di Sciascio1<br />1Politecnico di Bari<br />Via Orabona, 4<br />70125 Bari (ITALY)<br />2Universityof Trento<br />Via Sommarive, 14<br />38100 Trento (ITALY)<br />
  2. 2. Who is using tags?<br />and manymore…<br />
  3. 3. WhynottouseSemantictags?<br />Pluggedinto the Web 3.0<br />Disambiguation<br />Relations amongtags<br />Machineunderstandable<br />NOT:NotOnlyTag<br />http://sisinflab.poliba.it/not-only-tag/<br />
  4. 4. DBpedia-Ranker: architecture<br />Runtimesearch<br />Offline classification<br />System architecture<br /> Linked Data graph exploration<br /> Rank nodes exploiting <br /> external information<br /> Store results as pairs of nodes together with their similarity<br /> Start typing a tag<br /> Query the system for relevant tags (corresponding to DBpedia resources)<br /> Show the semantic tag cloud<br />DBpedia<br />1<br />2<br />1<br />SPARQL<br />3<br />1<br />1<br />GRAPH EXPLORER<br />TAGS<br />ExternalInformation Sources<br />2<br />3<br />2<br />3<br />Google<br />3<br />2<br />WEB INTERFACE<br />STORAGE<br />Yahoo!<br />RANKER<br />Bing<br />Delicious<br />
  5. 5. DBpedia-Ranker: ranking<br />?r1<br />?r2<br />isSimilar<br />hasValue<br />v<br />
  6. 6. DBpedia-Ranker: contextanalysis<br />The samesimilaritymeasureisused in the contextanalysis<br />C<br />?c1<br />Algorithm:<br />If(v>THRESHOLD) then<br /> r1belongsto the context;<br />add r1to the graphexplorationqueue<br />Else<br /> r1doesnotbelongto the context;<br />exclude r1fromgraphexploration<br />EndIf<br />?c2<br />belongsTo<br />?r1<br />?c…<br />?cN<br />hasValue<br />Example:<br />C = {ProgrammingLanguages, Databases, Software}<br />DoesDennis Ritchiebelongsto the givencontext?<br />v<br />
  7. 7. Evaluation (I)<br />http://sisinflab.poliba.it/evaluation<br />
  8. 8. Evaluation (II)<br />http://sisinflab.poliba.it/evaluation/data<br />
  9. 9. Future work<br /><ul><li>Test ouralgorithmswithdifferentdomains
  10. 10. Extract more fine grainedcontexts
  11. 11. Enrich the extractedcontextusingalsorelevantproperties
  12. 12. Integrateourapproachwithrealexistingsystems
  13. 13. Use the core system toautomaticallyextractrelevanttags (concepts) from a document (or from a collectionofdocuments) exploitingtoolsfornamedentitiesextraction</li></li></ul><li>Q&A<br />Thankyouforyourattention!<br />Semantictaggingforcrowdcomputing<br />Roberto Mirizzi, AzzurraRagone, Tommaso Di Noia, Eugenio Di Sciascio<br />mirizzi@deemail.poliba.it, ragone@disi.unitn.it, {ragone,dinoia,disciascio}@poliba.it<br />

×