Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Preliminary Mission Analysis for the Barcelona Moon Team Rover <br />8/26/2010<br />1<br />Mike Safyan – ISU/CTAE<br />
Project Goals<br />Primary Goals<br />Define an initial set of mission requirements<br />Create a set of design spreadshee...
Google Lunar X-Prize<br />International competition for private teams<br />Safely land and operate a robot on the lunar su...
Barcelona Moon Team<br />First Spain-based team<br />Headed by Galactic Suite Moonrace<br />Want to bring together Catalan...
Previous Work Conducted<br />Boris Maitre, UPC Master’s Thesis:<br />Transfer trajectory – Hohmann<br />Landing site – Lun...
Cost Estimate<br />6<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
GLXP Rules for the Rover<br />Travel a minimum of 500 meters from initial landing site.<br />Transmit from the surface an ...
Bonus Prizes<br />$4M Prize Purse<br /><ul><li>Heritage - imagery and video of a historical artifact from a previous missi...
GLXP Preferred Partners<br />Space X – 10% off launch costs<br />SETI – Free use of ATA for data downlink for 7 days<br />...
Lunar Terrain - General<br />10<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Lunar Mare relatively flat and smooth<br /...
Lunar Terrain – Rock Distribution<br />11<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Rock size and distribution is gr...
Lunar Terrain – Lighting<br />12<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Assuming minimum 20° sun angle is needed ...
Summary of Rover Requirements<br />Rover mass no greater than 80 kg.<br />Traverse obstacles up to 20 cm in height.<br />M...
Rover Design<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />14<br />
Rover Subsystems<br />15<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
Process<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />16<br />Analysis<br />Trade-offs<br />Recommendations<br />Discuss...
Rover Mobility<br />17<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
Power System Architecture<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />18<br />
Rover Power<br />19<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
Communication System Architecture<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />20<br />High rate, UHF<br />Ground Stati...
Rover Communications<br />21<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
Rover Mass and Power Budgets<br />22<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
Rover Link Budget<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />23<br />
Summary of Recommendations<br />Design for low mass, cost and complexity<br />rover design, landing site, path selection<b...
Moonbase Alpha/GLXP Proposal<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />25<br />
Summary<br />Initial set of mission requirements created<br />Gained a better understanding of lunar conditions for mobile...
Questions?<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />27<br />
Upcoming SlideShare
Loading in …5
×

ISU Internship Project - Barcelona Moon Team Mission Design

913 views

Published on

This the presentation for the internship project I conducted at CTAE in Barcelona, Spain as part of my master\'s curriculum at the International Space University

  • Be the first to comment

  • Be the first to like this

ISU Internship Project - Barcelona Moon Team Mission Design

  1. 1. Preliminary Mission Analysis for the Barcelona Moon Team Rover <br />8/26/2010<br />1<br />Mike Safyan – ISU/CTAE<br />
  2. 2. Project Goals<br />Primary Goals<br />Define an initial set of mission requirements<br />Create a set of design spreadsheets<br />Secondary Goals<br />Provide some initial design recommendations<br />2<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  3. 3. Google Lunar X-Prize<br />International competition for private teams<br />Safely land and operate a robot on the lunar surface<br />Must be 90% privately funded (10% government)<br />21 teams participating (and 2 withdrawn)<br />$30K registration, $30M prize purse<br />3<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  4. 4. Barcelona Moon Team<br />First Spain-based team<br />Headed by Galactic Suite Moonrace<br />Want to bring together Catalan (and Spanish) entrepreneurial, industrial and academic capabilities<br />Want as much of the project as possible to come from local industry<br />Want to be creative and fun<br />4<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  5. 5. Previous Work Conducted<br />Boris Maitre, UPC Master’s Thesis:<br />Transfer trajectory – Hohmann<br />Landing site – Luna 17/Lunokhod 1<br />Mass at launch:<br />0.5 to 8.5 tons (LEO)<br />0.3 to 3 tons (GTO)<br />Launch Vehicle – Ariane 5<br />5<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  6. 6. Cost Estimate<br />6<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  7. 7. GLXP Rules for the Rover<br />Travel a minimum of 500 meters from initial landing site.<br />Transmit from the surface an “Arrival Mooncast” and a “Mission Complete Mooncast”.<br />Contains a set of defined images, video, and data<br />Approximately 500Mb<br />7<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  8. 8. Bonus Prizes<br />$4M Prize Purse<br /><ul><li>Heritage - imagery and video of a historical artifact from a previous mission</li></ul>Water Detection – prove the presence of water on the surface<br />Range – travel 5 km<br />Survival – operate for at least two lunar days<br /><ul><li>Diversity – promote diversity in the field of space exploration</li></ul>8<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  9. 9. GLXP Preferred Partners<br />Space X – 10% off launch costs<br />SETI – Free use of ATA for data downlink for 7 days<br />Universal Space Network– 50% discount for TT&C services for 30 days<br />Space Florida - $2M bonus if launch from Florida<br /><ul><li>AGI – Free STK package</li></ul>9<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  10. 10. Lunar Terrain - General<br />10<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Lunar Mare relatively flat and smooth<br />Lunar Highlands relatively rough, heavily cratered<br />
  11. 11. Lunar Terrain – Rock Distribution<br />11<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Rock size and distribution is greater near “fresh” craters<br />
  12. 12. Lunar Terrain – Lighting<br />12<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />Assuming minimum 20° sun angle is needed for the Solar Arrays, that only gives 10 Earth days of lunar operation per lunar day<br />
  13. 13. Summary of Rover Requirements<br />Rover mass no greater than 80 kg.<br />Traverse obstacles up to 20 cm in height.<br />Maintain a ground contact pressure less than 7 to 10 kPa at all times.<br />Traverse slopes, both up and down, of a minimum 20°.<br />Minimum roving speed of 10 cm/s<br />Complete the surface GLXP mission requirements within 10 Earth days.<br />13<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  14. 14. Rover Design<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />14<br />
  15. 15. Rover Subsystems<br />15<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  16. 16. Process<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />16<br />Analysis<br />Trade-offs<br />Recommendations<br />Discussion<br />Future Work<br />
  17. 17. Rover Mobility<br />17<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  18. 18. Power System Architecture<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />18<br />
  19. 19. Rover Power<br />19<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  20. 20. Communication System Architecture<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />20<br />High rate, UHF<br />Ground Station<br />Rover<br />Lander<br />Low rate, S-band<br />Low rate, S-band<br />High rate, X-band<br />Low rate, S-band<br />
  21. 21. Rover Communications<br />21<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  22. 22. Rover Mass and Power Budgets<br />22<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  23. 23. Rover Link Budget<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />23<br />
  24. 24. Summary of Recommendations<br />Design for low mass, cost and complexity<br />rover design, landing site, path selection<br />Choose mission unique aspects with minimal impact on rover design<br />Use GLXP preferred partners where feasible<br />Put any complex payloads on the lander<br />Sell acquired data, such as mobility performance results<br />24<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  25. 25. Moonbase Alpha/GLXP Proposal<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />25<br />
  26. 26. Summary<br />Initial set of mission requirements created<br />Gained a better understanding of lunar conditions for mobile robotics<br />Created spreadsheets for evaluating mission design options/feasibility<br />Provided initial values for rover mass, power and link budgets<br />26<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />
  27. 27. Questions?<br />8/26/2010<br />Mike Safyan – ISU/CTAE<br />27<br />

×