Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Poster tuber borchii research in portugal iwemm morocco


Published on

poster presented at the Internation Workshop on Edible Mycorrhizal Mushroom in Morocco 2014.
We describe the results on the ecology of Tuber borchii in natural sites and truffle plantation in worth Portugal, including molecular diversity and borchii mating types.

Published in: Science
  • Login to see the comments

  • Be the first to like this

Poster tuber borchii research in portugal iwemm morocco

  1. 1. See discussions, stats, and author profiles for this publication at: First insights on Tuber borchii distribution in both natural forests and experimental truffle fields in Portugal Conference Paper · October 2014 READS 66 9 authors, including: Beatrice Belfiori Italian National Research Council 23 PUBLICATIONS 302 CITATIONS SEE PROFILE Francesco Paolocci Italian National Research Council 87 PUBLICATIONS 1,926 CITATIONS SEE PROFILE Available from: Marcos Morcillo Retrieved on: 08 July 2016
  2. 2. First  insights  on  Tuber  borchii  distribu.on     in  both  natural  forests  and  experimental  truffle  fields  in  Portugal   Anabela  Marisa  Azul1,  João  Trovão1,  Marcos  Morcillo2,  Andrea  Rubini3,  Alessandro   Trusso3,  Beatrice  Belfiori3,  Francesco  Paolocci3,  Helena  Freitas1,  and  Claudia  Riccioni3   1Centre  for  FuncAonal  Ecology,  Department  of  Life  Sciences.  University  of  Coimbra,  3001-­‐401  Coimbra,  Portugal.  E-­‐mail:   2Micologia  Forestal  &  Aplicada,  Rbla.  Arnau  6  local  D,  Vilanova  i  la  Geltrú,  08800  Barcelona,  Spain   3  CNR  (NaAonal  Research  Council)  -­‐  InsAtute  of  Biosciences  and  BioResources  (IBBR),  Via  della  Madonna  Alta,  130  -­‐  06128  Perugia,  Italy     AIM  To  monitor  the  distribuAon  and   dynamics  of  T.  borchii  in  naAve  forests  and   experimental  truffle  trials  established  in   Portugal  (Alentejo  region).     BACKGROUND  Among  the  most  valuable  ectomycorrhizal  fungi  belonging  to  Tuber  spp.,  Tuber  borchii,  is  becoming  an   increasingly  popular  fungus  in  the  marketplace.  Thanks  to  a  good  adaptaAon  to  mulAple  environments,  T.  borchii  is  also   culAvated,  in  both  naAve  and  non  endemic  areas.  As  all  symbioAc  species,  this  fungus  can  improve  mineral  nutriAon  and   stress-­‐tolerance   of   the   host   plant.   The   scienAfic   relevance   of   T.   borchii   as   a   model   species   for   studying   plant-­‐fungus   symbioses   is   also   recognized.   MaAng   type   (MAT)   genes   governing   the   sexual   reproducAon   (i.e.   frucAficaAon)   have   been   recently  idenAfied  unveiling  that  this  is  a  heterothallic  fungus  (MarAn  et  al  2012  European  Patent    EP2426215).     PRELIMINARY  RESULTS   REFERENCES   Azul  et  al.  2010  Mycorrhiza  20,  73-­‐88   MarAn  F  et  al.  2012  European  Patent    EP2426215   Murat  et  al.  2013  New  Phytol  199:176-­‐187   Rubini  et  al.  2011  New  Phytol  189:710-­‐722   Rubini  et  al.  2014  Mycorrhiza  24,  S19-­‐S27   ACKNOWLEDGEMENTS   Bilateral  Agreement  between  FCT-­‐MCTES   (Portuguese  FoundaAon  for  Science  and   Technology)  and  CNR  (Italian  NaAonal  Research   Council),  and  VIDT  19118  Co-­‐funded  by  COMPETE-­‐ FEDER-­‐EU,  for  financial  support.  All  faciliAes  at  the   farm  units,  Freixo,  Breijinho,  and  Quinta  de  Sousa.   FUTURE  RESEARCH   During  Summer  2014  a  consistent  number  of  new  T.  borchii   ECMs  has  been  found  and  collected  in  the  same  natural  areas.   This  material  is  now  under  analysis  to  assess  whether  the   distribuAon  pajern  of  T.  borchii  ECMs  with  different  maAng   type  is  biased  on  their  hosts  as  it  has  been  recently   demonstrated  to  occur  on  host  plants  colonized  by  T.   melanosporum  (Rubini  et  al.  2011,  2014;  Murat  et  al.  2013).   CONCLUSIONS   Our  data  show  that,  at  least  in  experimental  truffle  grounds,  T.  borchii  ECMs  of   different  maAng  type  can  coexist  under  the  same  host-­‐plant.  This  pajern,  if   supported  by  further  data,  disAnguishes  this  species  from  the  valuable  black  truffle   T.  melanosporum,  where  a  biased  distribuAon  of  the  two  maAng  types  on  single   host  plants  was  evidenced,  suggesAng  intraspecific  compeAAon  (Rubini  et  al.  2011;   Murat  et  al.  2013).  It  could  be  very  interesAng  to  invesAgate  whether  or  not  such  a   dissimilarity  in  the  strain  dynamics  of  the  two  species  might  be  at  the  basis  of  their   very  different  ecological  requirements  and  pajern  of  geographic  distribuAon.   Tuber  borchii     SAMPLING  SITES     1  Natural  forests  (NF),  corresponding  to   naAve  Mediterranean  oak  woodlands   dominated  by  Quercus  suber  L.  (cork  oak,  Qs).   2  Experimental  field  trial  1  (EFT1),  with   plantlets  of  Pinus  pinea  L.  (stone  pine,  Pp)   inoculated  with  T.  borchii,  introduced  in  areas   dominated  by  Qs  and  Pp  (in  spring  2010).     3  Experimental  field  trial  2  (EFT2)  inoculaAon   in  situ  of  Qs  and  Pp  young  trees  with  spores   of  T.  borchii  in  oak  woodlands  (spring  2011).     METHODS   Samplings  were  performed  in  summer   2013.  Four  distant  plots,  two  in  the  NF,   and  two  in  EFT1  and  EFT2,  and  5  trees   per  plot,  were  selected.  Around  each   tree,  roots  and  soil  samples  were   collected  from  different  points.   Ectomycorrhizae  (ECM)  and  soil   samples  were  molecularly  analyzed  by   PCR-­‐amplificaAon  of  the  ITS  region  and   maAng  type  locus.   T.  borchii  ECMs  were  present  in  both  NF   and  EFTs  (Fig.  6),  with  higher  frequency,   up  to  50%  mycorrhiza.on,  in  EFT1  (Table   1),  and  ≤5%  in  EFT2.  In  NF,  T.  borchii   ECMs  were  more  irregularly  found.     Moreover,  preliminary  data  revealed   that  under  the  same  host  plant,  T.   borchii  ECMs  of  opposite  type   can  coexist  in  experimental  grounds.     EFT  2  Pp   aTbor   aECM   iECM   nECM   Abundance   ≤5%   75-­‐85%   12-­‐17%   <5%   EFT  2  Qs   aTbor   aECM   iECM   nECM   Abundance   ≤5%   70-­‐80%   15-­‐20%   <5%   EFT  1  Pp   aTbor   aECM   iECM   nECM   Abundance   ≤50%   45-­‐50%   40-­‐45%   ≤5%   Interes.ngly,  although  T.  borchii   ECMs  were  infrequently  found  in   natural  forest,  almost  all  of  the   soil  samples  revealed  the   belowground  presence  of   mycelium  of  T.  borchii  and  a   dominance  of  one  type   over  the  other.     Figure  2.  above  experimental  field  trial  1,  plantlets  of  Pinus  pinea  inoculated  with   T.   borchii   (spring   2010);   below   experimental   field   trial   2,   inoculaAon   in   situ   of   young  trees  of  Quercus  suber  and  P.  pinea  with  spores  of  T.  borchii  (spring  2011).   Figure   3.   Natural   forest   –   Herdade   do   Freixo,   Montemor-­‐o-­‐Novo,   Portugal,   represenAng  oak  woodlands  dominated  by  Quercus  suber.   Figure  4.  EFT1  –  Herdade  do  Brejinho,  Grândola,  Portugal.   Figure  5.  EFT2  –  Quinta  de  Sousa,  Montemor-­‐o-­‐Novo,  Portugal.     Tabela  1.  Abundance  of  T.  borchii  ECM  in  EFT1  and  EFT2.  aTbor  =  acAve  T.   borchii  ECM;  aECM  =  total  acAve  ECM,  iECM  =  total  inacAve  ECM,  nECM  =  total   non  mycorrhizal  roots  (see  Azul  et  al.  2010)   Natural  forests     cork  oak  woodlands   Experimental  truffle  trials   Figure  1.  DistribuAon  of  naAve  Mediterranean  oak   woodlands  dominated  by  Quercus  suber  in  Portugal   with  the  sampling  sites  located  in  the  Alentejo  region.      1        2        3        4        5        6          7          8          9      10      11    12  13   500bp   1Kb   Figure  6.  MulAplex  PCR  with  specific  primers  of  both  maAng  types   on  ECMs  collected  under  the  same  host  plant  (site  EFT1).  Lane  (L)   2:   posiAve   control,   MAT1-­‐2-­‐1.   L13:   posiAve   control,   MAT1-­‐1-­‐1.   L3-­‐11:  each  lane  represent  a  single  ECM.  L12:  negaAve  control.  L1:   Gene  Ruler  DNA  ladder  mix  (Fermentas).