Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Graph Theory - Exercises - Chapter 4 - Part II

394 views

Published on

Some solved exercises of Graph Theory. The reference book used was: "Grafos - Introdução e Prática".

Published in: Education
  • Be the first to comment

Graph Theory - Exercises - Chapter 4 - Part II

  1. 1. Lista de Exercícios - Teoria dos Grafos Exercícios do Capítulo 4 Michel Alves dos Santos ∗ Abril de 2011 ∗Bacharelando em Ciência da Computação, Universidade Federal do Estado de Alagoas(UFAL). E-mails: mi- chel.mas@gmail.com, michelalavessantos@hotmail.com. Disciplina: Teoria dos Grafos. Docente Responsável: Leo- nardo Viana Pereira. 1
  2. 2. Conteúdo Lista de Figuras 2 1 Questão 3. Determinine todas as árvores parciais do grafo G a seguir. 2 2 Questão 6. Como podemos adaptar o algoritmo de Kruskal para obter o valor de uma árvore parcial de valor máximo? 3 3 Questão 9. Um grafo G é autocomplementar se e somente se: 3 4 Questão 16. Um problema muito conhecido é o de atravessar um rio com uma cabra, um lobo e um cesto de alfaces, com o auxílio de um barqueiro, em um barco que só comporta dois desses elementos (problema da travessia). Dadas as restrições óbvias sobre quem pode, ou não, esperar lado a lado em uma margem, monte um modelo de caminho que indique ao menos uma sequência viável de travessia. 3 Lista de Figuras 1 Determinação de árvores parciais. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Algumas árvores parciais do grafo G. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Modelo para o problema da travessia. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Questão 3. Determinine todas as árvores parciais do grafo G a seguir. Figura 1: Determinação de árvores parciais. (a) Você pode garantir que realmente determinou todas? (b) O processo que você utilizou seria eficaz para o grafo H? Figura 2: Algumas árvores parciais do grafo G. 2
  3. 3. (a) Não. (b) Seria necessário um tempo considerável de processamento uma vez que o processo usado foi a retirada aleatória de ciclos. Como o grafo H possui vários ciclos o processo não seria eficaz. 2 Questão 6. Como podemos adaptar o algoritmo de Kruskal para obter o valor de uma árvore parcial de valor máximo? É simples, basta ao invés de pegar a aresta com menor valor a cada iteração, pegar a arestas com maior valor em cada iteração, dessa forma o resultado será o valor de uma árvore parcial de valor máximo. 3 Questão 9. Um grafo G é autocomplementar se e somente se: 1. G = G. (a) Que ordem deve ter uma árvore autocomplementar? Como a ordem é pela cardinalidade ou número de vértices de um grafo então, |V(G)| será igual a |V(G)|, onde V(X) é a função que retorna os vértices do grafo X e |V(X)| é o operador que nos informa o número de vértices existentes no conjunto dos vértices pertencentes ao grafo X. (b) Quais serão as árvores autocomplementares? Serão todas aquelas isomórficas a G. 4 Questão 16. Um problema muito conhecido é o de atravessar um rio com uma cabra, um lobo e um cesto de alfaces, com o auxílio de um barqueiro, em um barco que só comporta dois desses elementos (problema da travessia). Dadas as restrições óbvias sobre quem pode, ou não, esperar lado a lado em uma margem, monte um modelo de caminho que indique ao menos uma sequência viável de travessia. Levando em consideração que todos estavam na margem 1 e o objetivo é que todos estejam na margem 2, teremos o seguinte algoritmo: 1. Barqueiro leva ovelha para margem 2. 2. Barqueiro volta só para margem 1. 3. Barqueiro leva o lobo ou cesto de alfaces para margem 2. 4. Barqueiro volta com o a ovelha. 5. Barqueiro leva o cesto de alfaces ou lobo. 6. Barqueiro volta só. 7. Barqueiro leva a ovelha. Para montar um modelo de caminho algumas abstrações devem serem feitas. Cada nó terá em seu rótulo um par ordenado (x,y) onde x pertence ao conjunto 1,2,3,4 representando, respectivamente, a ovelha, o lobo, o cesto de alface e o barqueiro e y pertence ao conjunto 1,2 onde representamos, respectivamente, a margem 1 e margem 2. Ou seja, no par terá quem está no barco e para onde está indo, lembrando que no caso onde x = 1 ou x = 2, ou x = 3, fica subentendido que o barqueiro também se encontra no barco. A ilustração a seguir reforça a sequência de travessia apresentada (Figura 3). Vale observar que um algoritmo de busca em profundidade resolveria esse modelo de caminho. 3
  4. 4. Figura 3: Modelo para o problema da travessia. 4

×