Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Feasible Combinatorial Matrix Theory - MFCS2013

1,424 views

Published on

  • Be the first to comment

  • Be the first to like this

Feasible Combinatorial Matrix Theory - MFCS2013

  1. 1. Feasible Combinatorial Matrix Theory Ariel Fernandez & Michael Soltys August 29, 2013 Comb Matrix - Soltys MFCS’13 IST Austria Title - 1/21
  2. 2. Statistical Archeology: sequence dating (Flinders Petrie, 1899) 900 pre-dynastic Egyptian graves containing 800 representatives of pottery. The “graves-versus-varieties” matrix contains vast amount of information, such as sequential ordering. [Kendall 1969] Comb Matrix - Soltys MFCS’13 IST Austria Introduction - 2/21
  3. 3. Paleogenomics: DNA sequence organization of ancient living organisms using similarities and differences between chromosomes of extant organisms. [Chauve et al 2008] Comb Matrix - Soltys MFCS’13 IST Austria Introduction - 3/21
  4. 4. Consecutive-ones Property: C1P Consider a slight relaxation, (k, δ)-C1P: each row has at most k blocks of 1s and the gap between any two blocks is at most δ. So (1, 0)-C1P is C1P, and deciding if an A has (k, δ)-C1P is: polytime for (1, 0) NP-hard for every k ≥ 2, δ ≥ 1 except (2, 1) What about (2, 1)? [Patterson 2012] Comb Matrix - Soltys MFCS’13 IST Austria Introduction - 4/21
  5. 5. K¨onig’s Min-Max 0 1 0 1 1 1 0 1 00 0 1 1 0 00 Comb Matrix - Soltys MFCS’13 IST Austria Introduction - 5/21
  6. 6. Comb Matrix - Soltys MFCS’13 IST Austria Introduction - 6/21
  7. 7. Problems Cover(A, α): ∀i, j ≤ r(A)(A(i, j) = 1 → α(1, i) = 1 ∨ α(2, j) = 1) MinCover(A, α): Cover(A, α) ∧ ∀α ≤ c(α)(Cover(A, α ) → Σα ≥ Σα) KMM(A, α, β): MinCover(A, α) ∧ MaxSelect(A, β) → Σα = Σβ a ΣB 1 formula. But classical proof is ΠB 2 — is there a ΣB 1 proof? Comb Matrix - Soltys MFCS’13 IST Austria Problem - 7/21
  8. 8. Related Theorems: Menger’s: size of min cut equals max nr of disjoint s, t-paths (“Min-Cut Max-Flow”) Hall’s: ∀k ∈ [n] |Si1 ∪ . . . ∪ Sik | ≥ k, then there exists a System of Distinct Representatives. Dilworth’s: Min nr of chains needed to partition a poset equals size of max anti-chain of that poset. Can they all be shown equivalent to KMM with ΣB 0 proofs? Comb Matrix - Soltys MFCS’13 IST Austria Problem - 8/21
  9. 9. ΣB 1 Proof of KMM Let lA be the min nr of lines necessary to cover A Let oA be the max selection of ones in A Comb Matrix - Soltys MFCS’13 IST Austria Main Proof - 9/21
  10. 10. 0 1 0 1 1 1 0 1 00 0 1 1 0 00 lA=oA= 3 We want to show with ΣB 1 induction that oA = lA. Comb Matrix - Soltys MFCS’13 IST Austria Main Proof - 10/21
  11. 11. LA uses ΣB 0 induction LA oA ≤ lA LA over Z is equivalent to VTC0 And oA ≤ lA follows more or less from the Pigeonhole Principle: if we can select oA 1s, no two on the same line, then we shall require at least lA lines to cover those 1s. Comb Matrix - Soltys MFCS’13 IST Austria Main Proof - 11/21
  12. 12. ∃LA oA ≥ lA Showing oA ≥ lA is more difficult; we use ΣB 1 induction. Lots of cases, but the interesting case is: 0 where we reduce the general case to the case of the blue matrix whose cover requires as many lines as rows. Comb Matrix - Soltys MFCS’13 IST Austria Main Proof - 12/21
  13. 13. 00 00 00 0 0 0 0 0 0 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 13/21
  14. 14. 10 00 00 0 0 0 0 0 0 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 14/21
  15. 15. 0 0 00 00 0 0 0 0 0 01 0 0 0 1 0 0 0 0 0 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 15/21
  16. 16. 1 0 00 00 0 0 0 0 0 01 0 0 0 1 0 0 0 0 0 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 16/21
  17. 17. 1 0 00 00 0 0 0 0 0 01 0 0 0 1 0 0 0 0 0 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 17/21
  18. 18. H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A B C D E FG Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 18/21
  19. 19. J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H 1 1 Comb Matrix - Soltys MFCS’13 IST Austria Interesting Case - 19/21
  20. 20. ΣB 0 Proof of Equivalence For example, ΣB 0 proof of Menger → KMM yx Left graph has a matching of size k ⇐⇒ Right graph has k disjoint {x, y}-paths Left graph has a cover of size k ⇐⇒ Right graph has an {x, y}-cut of size k KMM → Meng complicated, [Aharoni 1983] Comb Matrix - Soltys MFCS’13 IST Austria Proof of equivalences - 20/21
  21. 21. Some open problems Frankl’s Theorem: t a positive integer, and m ≤ n(2t −1) t ; if A is m × n, and its rows are distinct, then there exists a column that when deleted, the resulting matrix has at most 2t−1 − 1 pairs of equal rows. (Bondy’s Theorem when t = 1.) Complexity of decompositions: A = P1 + P2 + · · · + Pn + X; n boys and n girls, each boy introduced to exactly k girls and vice versa. Compute a pairing where each boy & girl has been previously introduced. Projective Geometry          1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0          Desargues Thm Comb Matrix - Soltys MFCS’13 IST Austria Conclusion - 21/21

×