SlideShare a Scribd company logo
Linked Data in E-Commerce –
 The GoodRelations Ontology

  ISKO UK Conference on Linked Data
    September 14, 2020, London, UK


          Prof. Dr. Martin Hepp
Professur für Allgemeine BWL, insbesondere E-Business
Matchmaking in Market Economies




14.09.2010                             2
Macroeconomic Impact

                   Transaction Costs:
                     > 50 % of the
                     US GDP (1970)
             John Joseph Wallis and Douglas C. North:
              Measuring the Transaction Sector in the
                 American Economy, 1870 – 1970
                              (1986)
14.09.2010                                              3
Key Driver of Search Costs:
           Specificity

How much you loose when you can‘t
use a good for what it was designed.
Growth in Specificity




             1920: 5168 Types of Goods

14.09.2010
                                         5
Examples




14.09.2010              6
Examples




14.09.2010              7
Examples




14.09.2010              8
Specificity Increases the
                 Search Space




14.09.2010                               9
WWW:
    Dramatic Reduction of Search Effort




             1993            2010
   Lower search costs per search than
          ever before in history.
14.09.2010                                10
But ….
The WWW: A Giant Data Shredder




     Source:                   Recipient:
 Structured Data            Unstructured Text



14.09.2010                              12
What is Linked Data Linked
                                 loves


                          Susi           Martin



       1            2              3              4




14.09.2010                                            13
What is Special About E-Commerce Data?
 1

 2           RDBMS



 3

 4           $$$
14.09.2010                        14
GoodRelations: A Global Schema for
    Commerce Data on the Web
                                            Extraction
                        Arbitrary Query     and Reuse


Manufacturers
                                                     Retailers
Payment
                                                     Delivery
Product Model                                 Warranty
 Master Data     Shop                Spare Parts &
                Offerings   Auctions Consumables
14.09.2010                                               15
On the Shoulders of Giants




     A Unified View of Commerce Data
                on the Web
14.09.2010                                16
GoodRelations Principle: Small Data
           Packets Inside Your Page




14.09.2010                                   17
Albert Einstein on Schema Design

"Make everything as simple as possible, but
                not simpler.“
                              Albert Einstein




14.09.2010                                 18
Data, Standards, Ontologies




14.09.2010                                 19
Subtle Distinctions Foster Data Reuse
• Product      Offer
     – „You can buy or lease my house“
• Store      Business entity
     – „How many Tesco stores are in London?“
• Product      Product Model
     – „How many digital cameras by Canon are
       listed on eBay“?

14.09.2010                                      20
Basic Structure of Offers

                                                 Object or
        Agent 1             Promise
                                                 Happening

                  Compensation     Transfer of
                                     Rights




                             Agent 2



14.09.2010                                                   21
Valuable Types of Links:
             Product - Product Model




                                                             Photo credits: Flickr.com, available
                                                              under CC BY 2.0 by bsabarnowl
   Ford T
   Data-      gr:hasMakeAndModel
   sheet




       Often via strong, non-URI identifiers like EAN/UPC
14.09.2010                                                  22
Valuable Types of Links:
                 Offer – Store(s)


    XYZ
              gr:availableAtOrFrom
    for $
     99




14.09.2010                              23
Valuable Types of Links:
              Company – Store(s)



                      gr:hasPOS




14.09.2010                              24
Impact and Success
• One of the few vocabularies implemented
  by major businesses out of their own
  budget.
• BestBuy, O’Reilly, Overstock.com,…
• Ca. 16 % of all triples as of now
• Supported by Yahoo
• Bing, Google may join

14.09.2010                                  25
Yahoo Enhanced by SearchMonkey




14.09.2010                           26
Developer Resources, Data, Tools




   http://purl.org/goodrelations/



14.09.2010                              27
Thank you!
                       http://purl.org/goodrelations/

                         Prof. Dr. Martin Hepp
             Chair of General Management and E-Business
                 Universitaet der Bundeswehr Muenchen
                      Werner-Heisenberg-Weg 39
                       D-85579 Neubiberg, Germany
                       Phone: +49 89 6004-4217
                          Fax: +49 89 6004-4620
                   http://www.unibw.de/ebusiness/

             http://purl.org/goodrelations/
                         mhepp@computer.org
14.09.2010                                                28
Both Sides Can Help Build a Bridge




14.09.2010                               29
Why is GoodRelations not part of the
 Linked Open Data cloud diagram?

   Is GoodRelations data linked data
               after all?
14.09.2010
                                                            Ontology Economics




  Hepp, Martin: Possible Ontologies: How Reality Constrains the
  Development of Relevant Ontologies, in: IEEE Internet Computing,
31




  Vol. 11, No. 1, pp. 90-96, Jan-Feb 2007
GoodRelations Design Principles
• Keep simple things       Lightweight         Heavyweight
  simple and make          Web of Data         Web of Data
  complex things
  possible                    LOD                OWL DL
• Cater for LOD and OWL   RDF + a little bit
  DL worlds
• Academically sound
• Industry-strength
  engineering
• Practically relevant

14.09.2010                                            32
Incredible Success




14.09.2010                        33
GoodRelations #2 of all Web Ontologies




         …and this does not yet include the > 10 Mio. offers
         from Amazon and eBay!

14.09.2010                                                     34
GoodRelations #2 of all Web Ontologies




14.09.2010                          35

More Related Content

Viewers also liked

A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
Martin Hepp
 
manufacturing operations
manufacturing operationsmanufacturing operations
manufacturing operations
Anshu Singh
 
The Semantic Web and its Impact on International Websites
The Semantic Web and its Impact on International WebsitesThe Semantic Web and its Impact on International Websites
The Semantic Web and its Impact on International Websites
Martin Hepp
 
Euroscipy SemNews 2011
Euroscipy SemNews 2011Euroscipy SemNews 2011
Euroscipy SemNews 2011
Logilab
 
Python en la Web Semántica
Python en la Web SemánticaPython en la Web Semántica
Python en la Web Semántica
Santiago Coffey
 
Semantic web, python, construction industry
Semantic web, python, construction industrySemantic web, python, construction industry
Semantic web, python, construction industry
Reinout van Rees
 
5 Characteristics Of Successful Intermediary Organisations
5 Characteristics Of Successful Intermediary Organisations5 Characteristics Of Successful Intermediary Organisations
5 Characteristics Of Successful Intermediary Organisations
ikmediaries
 
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
Martin Hepp
 
Semantic Web-based E-Commerce: The GoodRelations Ontology
Semantic Web-based E-Commerce: The GoodRelations OntologySemantic Web-based E-Commerce: The GoodRelations Ontology
Semantic Web-based E-Commerce: The GoodRelations Ontology
Martin Hepp
 
The GoodRelations Ontology: Making Semantic Web-based E-Commerce a Reality
The GoodRelations Ontology: Making Semantic  Web-based E-Commerce a RealityThe GoodRelations Ontology: Making Semantic  Web-based E-Commerce a Reality
The GoodRelations Ontology: Making Semantic Web-based E-Commerce a Reality
Martin Hepp
 
Semantic keyword research for e commerce site architecture planning
Semantic keyword research for e commerce site architecture planningSemantic keyword research for e commerce site architecture planning
Semantic keyword research for e commerce site architecture planning
Semrush
 
Semantic Web Landscape 2009
Semantic Web Landscape 2009Semantic Web Landscape 2009
Semantic Web Landscape 2009
LeeFeigenbaum
 
Linking the world with Python and Semantics
Linking the world with Python and SemanticsLinking the world with Python and Semantics
Linking the world with Python and Semantics
Tatiana Al-Chueyr
 
Designing and managing integrated marketing channels
Designing and managing integrated marketing channelsDesigning and managing integrated marketing channels
Designing and managing integrated marketing channels
Pranjal Mathur
 
Module 7 managing distribution channels
Module 7  managing distribution channelsModule 7  managing distribution channels
Module 7 managing distribution channels
JeVaughn Ferguson
 
Companies act 1956-ppt
Companies act 1956-pptCompanies act 1956-ppt
Companies act 1956-ppt
Indrajeet Kamble
 
Evolution Towards Web 3.0: The Semantic Web
Evolution Towards Web 3.0: The Semantic WebEvolution Towards Web 3.0: The Semantic Web
Evolution Towards Web 3.0: The Semantic Web
LeeFeigenbaum
 

Viewers also liked (17)

A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
A Short Introduction to Semantic Web-based E-Commerce: The GoodRelations Voca...
 
manufacturing operations
manufacturing operationsmanufacturing operations
manufacturing operations
 
The Semantic Web and its Impact on International Websites
The Semantic Web and its Impact on International WebsitesThe Semantic Web and its Impact on International Websites
The Semantic Web and its Impact on International Websites
 
Euroscipy SemNews 2011
Euroscipy SemNews 2011Euroscipy SemNews 2011
Euroscipy SemNews 2011
 
Python en la Web Semántica
Python en la Web SemánticaPython en la Web Semántica
Python en la Web Semántica
 
Semantic web, python, construction industry
Semantic web, python, construction industrySemantic web, python, construction industry
Semantic web, python, construction industry
 
5 Characteristics Of Successful Intermediary Organisations
5 Characteristics Of Successful Intermediary Organisations5 Characteristics Of Successful Intermediary Organisations
5 Characteristics Of Successful Intermediary Organisations
 
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
Product Variety, Consumer Preferences, and Web Technology: Can the Web of Dat...
 
Semantic Web-based E-Commerce: The GoodRelations Ontology
Semantic Web-based E-Commerce: The GoodRelations OntologySemantic Web-based E-Commerce: The GoodRelations Ontology
Semantic Web-based E-Commerce: The GoodRelations Ontology
 
The GoodRelations Ontology: Making Semantic Web-based E-Commerce a Reality
The GoodRelations Ontology: Making Semantic  Web-based E-Commerce a RealityThe GoodRelations Ontology: Making Semantic  Web-based E-Commerce a Reality
The GoodRelations Ontology: Making Semantic Web-based E-Commerce a Reality
 
Semantic keyword research for e commerce site architecture planning
Semantic keyword research for e commerce site architecture planningSemantic keyword research for e commerce site architecture planning
Semantic keyword research for e commerce site architecture planning
 
Semantic Web Landscape 2009
Semantic Web Landscape 2009Semantic Web Landscape 2009
Semantic Web Landscape 2009
 
Linking the world with Python and Semantics
Linking the world with Python and SemanticsLinking the world with Python and Semantics
Linking the world with Python and Semantics
 
Designing and managing integrated marketing channels
Designing and managing integrated marketing channelsDesigning and managing integrated marketing channels
Designing and managing integrated marketing channels
 
Module 7 managing distribution channels
Module 7  managing distribution channelsModule 7  managing distribution channels
Module 7 managing distribution channels
 
Companies act 1956-ppt
Companies act 1956-pptCompanies act 1956-ppt
Companies act 1956-ppt
 
Evolution Towards Web 3.0: The Semantic Web
Evolution Towards Web 3.0: The Semantic WebEvolution Towards Web 3.0: The Semantic Web
Evolution Towards Web 3.0: The Semantic Web
 

Similar to ISKO 2010: Linked Data in E-Commerce – The GoodRelations Ontology

Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisatiesData Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
Multiscope
 
Smarter Analytics: Big Data and Predictive Governance
Smarter Analytics: Big Data and Predictive GovernanceSmarter Analytics: Big Data and Predictive Governance
Smarter Analytics: Big Data and Predictive Governance
IBM Danmark
 
Introduction to-data-science
Introduction to-data-scienceIntroduction to-data-science
Introduction to-data-science
Ahmad karawash
 
Steven adler ibm big data predictions
Steven adler   ibm big data predictionsSteven adler   ibm big data predictions
Steven adler ibm big data predictions
GlobalForum
 
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
Babbel
 
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data WebLOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
LOD2 Creating Knowledge out of Interlinked Data
 
ePSI Platform: objectives & opportunities for #SOD14
ePSI Platform: objectives & opportunities for #SOD14ePSI Platform: objectives & opportunities for #SOD14
ePSI Platform: objectives & opportunities for #SOD14
Matteo Brunati
 
Michael newberry
Michael newberryMichael newberry
Michael newberry
PatrickCrompton
 
Problems Faced By Japanese Foreign Investments Relations...
Problems Faced By Japanese Foreign Investments Relations...Problems Faced By Japanese Foreign Investments Relations...
Problems Faced By Japanese Foreign Investments Relations...
Kimberly Thomas
 
IBM Collaboration Solutions cognitive and roadmap update - September 2016
IBM Collaboration Solutions cognitive and roadmap update - September 2016IBM Collaboration Solutions cognitive and roadmap update - September 2016
IBM Collaboration Solutions cognitive and roadmap update - September 2016
Ed Brill
 
Ten 2015 Technology Predictions
Ten 2015 Technology PredictionsTen 2015 Technology Predictions
Ten 2015 Technology Predictions
ibi
 
Big data overview external
Big data overview externalBig data overview external
Big data overview external
Brett Colbert
 
The Big Data Value PPP: A Standardisation Opportunity for Europe
The Big Data Value PPP: A Standardisation Opportunity for EuropeThe Big Data Value PPP: A Standardisation Opportunity for Europe
The Big Data Value PPP: A Standardisation Opportunity for Europe
Edward Curry
 
Web Page Optimization for Facebook
Web Page Optimization for FacebookWeb Page Optimization for Facebook
Web Page Optimization for Facebook
Martin Hepp
 
Web Page Optimization for Facebook and Beyond
Web Page Optimization for Facebook and BeyondWeb Page Optimization for Facebook and Beyond
Web Page Optimization for Facebook and Beyond
guest8bffd5
 
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
affilinet
 
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Paul Brown
 
Business growth principles in the new economy
Business growth principles in the new economy Business growth principles in the new economy
Business growth principles in the new economy
Ashish Bedekar
 
Introduction: Open Data Business
Introduction: Open Data BusinessIntroduction: Open Data Business
Introduction: Open Data Business
Martin Kaltenböck
 
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
BCS Data Management Specialist Group
 

Similar to ISKO 2010: Linked Data in E-Commerce – The GoodRelations Ontology (20)

Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisatiesData Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
Data Pioneers - Roland Haeve (Atos Nederland) - Big data in organisaties
 
Smarter Analytics: Big Data and Predictive Governance
Smarter Analytics: Big Data and Predictive GovernanceSmarter Analytics: Big Data and Predictive Governance
Smarter Analytics: Big Data and Predictive Governance
 
Introduction to-data-science
Introduction to-data-scienceIntroduction to-data-science
Introduction to-data-science
 
Steven adler ibm big data predictions
Steven adler   ibm big data predictionsSteven adler   ibm big data predictions
Steven adler ibm big data predictions
 
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
IGNITION: Winning data strategies for publishers by Todd Teresi/Quantcast
 
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data WebLOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
LOD2 Plenary Vienna 2012: WP8: Linked Open Data for Enterprise Data Web
 
ePSI Platform: objectives & opportunities for #SOD14
ePSI Platform: objectives & opportunities for #SOD14ePSI Platform: objectives & opportunities for #SOD14
ePSI Platform: objectives & opportunities for #SOD14
 
Michael newberry
Michael newberryMichael newberry
Michael newberry
 
Problems Faced By Japanese Foreign Investments Relations...
Problems Faced By Japanese Foreign Investments Relations...Problems Faced By Japanese Foreign Investments Relations...
Problems Faced By Japanese Foreign Investments Relations...
 
IBM Collaboration Solutions cognitive and roadmap update - September 2016
IBM Collaboration Solutions cognitive and roadmap update - September 2016IBM Collaboration Solutions cognitive and roadmap update - September 2016
IBM Collaboration Solutions cognitive and roadmap update - September 2016
 
Ten 2015 Technology Predictions
Ten 2015 Technology PredictionsTen 2015 Technology Predictions
Ten 2015 Technology Predictions
 
Big data overview external
Big data overview externalBig data overview external
Big data overview external
 
The Big Data Value PPP: A Standardisation Opportunity for Europe
The Big Data Value PPP: A Standardisation Opportunity for EuropeThe Big Data Value PPP: A Standardisation Opportunity for Europe
The Big Data Value PPP: A Standardisation Opportunity for Europe
 
Web Page Optimization for Facebook
Web Page Optimization for FacebookWeb Page Optimization for Facebook
Web Page Optimization for Facebook
 
Web Page Optimization for Facebook and Beyond
Web Page Optimization for Facebook and BeyondWeb Page Optimization for Facebook and Beyond
Web Page Optimization for Facebook and Beyond
 
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
 
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
Striking Gold! How Mobile Marketing Pioneers are Winning the Hearts & Minds o...
 
Business growth principles in the new economy
Business growth principles in the new economy Business growth principles in the new economy
Business growth principles in the new economy
 
Introduction: Open Data Business
Introduction: Open Data BusinessIntroduction: Open Data Business
Introduction: Open Data Business
 
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
Horse meat or beef? (3) D Murphy, National Grid, 21/3/13
 

More from Martin Hepp

The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
Martin Hepp
 
Extending schema.org with GoodRelations and www.productontology.org
Extending schema.org with GoodRelations and www.productontology.orgExtending schema.org with GoodRelations and www.productontology.org
Extending schema.org with GoodRelations and www.productontology.org
Martin Hepp
 
Advertising with Linked Data in Web Content
Advertising with Linked Data in Web ContentAdvertising with Linked Data in Web Content
Advertising with Linked Data in Web Content
Martin Hepp
 
Goodrelations semtech2010
Goodrelations semtech2010Goodrelations semtech2010
Goodrelations semtech2010
Martin Hepp
 
SEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations: An Implementation by a Major Online RetailerSEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
Martin Hepp
 
SEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations - An Implementation by a Major Online RetailerSEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
Martin Hepp
 
Goodrelations Presentation from SemTech 2010
Goodrelations Presentation from SemTech 2010Goodrelations Presentation from SemTech 2010
Goodrelations Presentation from SemTech 2010
Martin Hepp
 
GoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
GoodRelations & RDFa for Deep Comparison Shopping on a Web ScaleGoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
GoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
Martin Hepp
 
Web Site Visibility in the Giant Graph of Commerce Data
Web Site Visibility in the Giant Graph of Commerce DataWeb Site Visibility in the Giant Graph of Commerce Data
Web Site Visibility in the Giant Graph of Commerce Data
Martin Hepp
 
ISWC GoodRelations Tutorial Part 1
ISWC GoodRelations Tutorial Part 1ISWC GoodRelations Tutorial Part 1
ISWC GoodRelations Tutorial Part 1
Martin Hepp
 
ISWC GoodRelations Tutorial Part 3
ISWC GoodRelations Tutorial Part 3ISWC GoodRelations Tutorial Part 3
ISWC GoodRelations Tutorial Part 3
Martin Hepp
 
ISWC GoodRelations Tutorial Part 2
ISWC GoodRelations Tutorial Part 2ISWC GoodRelations Tutorial Part 2
ISWC GoodRelations Tutorial Part 2
Martin Hepp
 
ISWC GoodRelations Tutorial Part 4
ISWC GoodRelations Tutorial Part 4ISWC GoodRelations Tutorial Part 4
ISWC GoodRelations Tutorial Part 4
Martin Hepp
 
Web 3.0. für Spezialversender
Web 3.0. für Spezialversender Web 3.0. für Spezialversender
Web 3.0. für Spezialversender
Martin Hepp
 
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-AnwendereCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
Martin Hepp
 
Deep Comparison Shopping
Deep Comparison ShoppingDeep Comparison Shopping
Deep Comparison Shopping
Martin Hepp
 
myOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
myOntology: Community-driven Vocabulary Design and Maintenance for E-CommercemyOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
myOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
Martin Hepp
 

More from Martin Hepp (17)

The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
The Semantic Web – A Vision Come True, or Giving Up the Great Plan?
 
Extending schema.org with GoodRelations and www.productontology.org
Extending schema.org with GoodRelations and www.productontology.orgExtending schema.org with GoodRelations and www.productontology.org
Extending schema.org with GoodRelations and www.productontology.org
 
Advertising with Linked Data in Web Content
Advertising with Linked Data in Web ContentAdvertising with Linked Data in Web Content
Advertising with Linked Data in Web Content
 
Goodrelations semtech2010
Goodrelations semtech2010Goodrelations semtech2010
Goodrelations semtech2010
 
SEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations: An Implementation by a Major Online RetailerSEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations: An Implementation by a Major Online Retailer
 
SEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations - An Implementation by a Major Online RetailerSEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
SEO, RDFa, and GoodRelations - An Implementation by a Major Online Retailer
 
Goodrelations Presentation from SemTech 2010
Goodrelations Presentation from SemTech 2010Goodrelations Presentation from SemTech 2010
Goodrelations Presentation from SemTech 2010
 
GoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
GoodRelations & RDFa for Deep Comparison Shopping on a Web ScaleGoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
GoodRelations & RDFa for Deep Comparison Shopping on a Web Scale
 
Web Site Visibility in the Giant Graph of Commerce Data
Web Site Visibility in the Giant Graph of Commerce DataWeb Site Visibility in the Giant Graph of Commerce Data
Web Site Visibility in the Giant Graph of Commerce Data
 
ISWC GoodRelations Tutorial Part 1
ISWC GoodRelations Tutorial Part 1ISWC GoodRelations Tutorial Part 1
ISWC GoodRelations Tutorial Part 1
 
ISWC GoodRelations Tutorial Part 3
ISWC GoodRelations Tutorial Part 3ISWC GoodRelations Tutorial Part 3
ISWC GoodRelations Tutorial Part 3
 
ISWC GoodRelations Tutorial Part 2
ISWC GoodRelations Tutorial Part 2ISWC GoodRelations Tutorial Part 2
ISWC GoodRelations Tutorial Part 2
 
ISWC GoodRelations Tutorial Part 4
ISWC GoodRelations Tutorial Part 4ISWC GoodRelations Tutorial Part 4
ISWC GoodRelations Tutorial Part 4
 
Web 3.0. für Spezialversender
Web 3.0. für Spezialversender Web 3.0. für Spezialversender
Web 3.0. für Spezialversender
 
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-AnwendereCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
eCl@ss im Web: Mehr Kunden und bessere Stammdaten für jeden eCl@ss-Anwender
 
Deep Comparison Shopping
Deep Comparison ShoppingDeep Comparison Shopping
Deep Comparison Shopping
 
myOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
myOntology: Community-driven Vocabulary Design and Maintenance for E-CommercemyOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
myOntology: Community-driven Vocabulary Design and Maintenance for E-Commerce
 

Recently uploaded

Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
shyamraj55
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development ProvidersYour One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
akankshawande
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems S.M.S.A.
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
kumardaparthi1024
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Tosin Akinosho
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc
 
OpenID AuthZEN Interop Read Out - Authorization
OpenID AuthZEN Interop Read Out - AuthorizationOpenID AuthZEN Interop Read Out - Authorization
OpenID AuthZEN Interop Read Out - Authorization
David Brossard
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
Mariano Tinti
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
Zilliz
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
Daiki Mogmet Ito
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
Pixlogix Infotech
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
Kari Kakkonen
 

Recently uploaded (20)

Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with SlackLet's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
Let's Integrate MuleSoft RPA, COMPOSER, APM with AWS IDP along with Slack
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development ProvidersYour One-Stop Shop for Python Success: Top 10 US Python Development Providers
Your One-Stop Shop for Python Success: Top 10 US Python Development Providers
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
Uni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdfUni Systems Copilot event_05062024_C.Vlachos.pdf
Uni Systems Copilot event_05062024_C.Vlachos.pdf
 
GenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizationsGenAI Pilot Implementation in the organizations
GenAI Pilot Implementation in the organizations
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
Monitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdfMonitoring and Managing Anomaly Detection on OpenShift.pdf
Monitoring and Managing Anomaly Detection on OpenShift.pdf
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
 
TrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy SurveyTrustArc Webinar - 2024 Global Privacy Survey
TrustArc Webinar - 2024 Global Privacy Survey
 
OpenID AuthZEN Interop Read Out - Authorization
OpenID AuthZEN Interop Read Out - AuthorizationOpenID AuthZEN Interop Read Out - Authorization
OpenID AuthZEN Interop Read Out - Authorization
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Mariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceXMariano G Tinti - Decoding SpaceX
Mariano G Tinti - Decoding SpaceX
 
Programming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup SlidesProgramming Foundation Models with DSPy - Meetup Slides
Programming Foundation Models with DSPy - Meetup Slides
 
How to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For FlutterHow to use Firebase Data Connect For Flutter
How to use Firebase Data Connect For Flutter
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 
Best 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERPBest 20 SEO Techniques To Improve Website Visibility In SERP
Best 20 SEO Techniques To Improve Website Visibility In SERP
 
Climate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing DaysClimate Impact of Software Testing at Nordic Testing Days
Climate Impact of Software Testing at Nordic Testing Days
 

ISKO 2010: Linked Data in E-Commerce – The GoodRelations Ontology

  • 1. Linked Data in E-Commerce – The GoodRelations Ontology ISKO UK Conference on Linked Data September 14, 2020, London, UK Prof. Dr. Martin Hepp Professur für Allgemeine BWL, insbesondere E-Business
  • 2. Matchmaking in Market Economies 14.09.2010 2
  • 3. Macroeconomic Impact Transaction Costs: > 50 % of the US GDP (1970) John Joseph Wallis and Douglas C. North: Measuring the Transaction Sector in the American Economy, 1870 – 1970 (1986) 14.09.2010 3
  • 4. Key Driver of Search Costs: Specificity How much you loose when you can‘t use a good for what it was designed.
  • 5. Growth in Specificity 1920: 5168 Types of Goods 14.09.2010 5
  • 9. Specificity Increases the Search Space 14.09.2010 9
  • 10. WWW: Dramatic Reduction of Search Effort 1993 2010 Lower search costs per search than ever before in history. 14.09.2010 10
  • 12. The WWW: A Giant Data Shredder Source: Recipient: Structured Data Unstructured Text 14.09.2010 12
  • 13. What is Linked Data Linked loves Susi Martin 1 2 3 4 14.09.2010 13
  • 14. What is Special About E-Commerce Data? 1 2 RDBMS 3 4 $$$ 14.09.2010 14
  • 15. GoodRelations: A Global Schema for Commerce Data on the Web Extraction Arbitrary Query and Reuse Manufacturers Retailers Payment Delivery Product Model Warranty Master Data Shop Spare Parts & Offerings Auctions Consumables 14.09.2010 15
  • 16. On the Shoulders of Giants A Unified View of Commerce Data on the Web 14.09.2010 16
  • 17. GoodRelations Principle: Small Data Packets Inside Your Page 14.09.2010 17
  • 18. Albert Einstein on Schema Design "Make everything as simple as possible, but not simpler.“ Albert Einstein 14.09.2010 18
  • 20. Subtle Distinctions Foster Data Reuse • Product Offer – „You can buy or lease my house“ • Store Business entity – „How many Tesco stores are in London?“ • Product Product Model – „How many digital cameras by Canon are listed on eBay“? 14.09.2010 20
  • 21. Basic Structure of Offers Object or Agent 1 Promise Happening Compensation Transfer of Rights Agent 2 14.09.2010 21
  • 22. Valuable Types of Links: Product - Product Model Photo credits: Flickr.com, available under CC BY 2.0 by bsabarnowl Ford T Data- gr:hasMakeAndModel sheet Often via strong, non-URI identifiers like EAN/UPC 14.09.2010 22
  • 23. Valuable Types of Links: Offer – Store(s) XYZ gr:availableAtOrFrom for $ 99 14.09.2010 23
  • 24. Valuable Types of Links: Company – Store(s) gr:hasPOS 14.09.2010 24
  • 25. Impact and Success • One of the few vocabularies implemented by major businesses out of their own budget. • BestBuy, O’Reilly, Overstock.com,… • Ca. 16 % of all triples as of now • Supported by Yahoo • Bing, Google may join 14.09.2010 25
  • 26. Yahoo Enhanced by SearchMonkey 14.09.2010 26
  • 27. Developer Resources, Data, Tools http://purl.org/goodrelations/ 14.09.2010 27
  • 28. Thank you! http://purl.org/goodrelations/ Prof. Dr. Martin Hepp Chair of General Management and E-Business Universitaet der Bundeswehr Muenchen Werner-Heisenberg-Weg 39 D-85579 Neubiberg, Germany Phone: +49 89 6004-4217 Fax: +49 89 6004-4620 http://www.unibw.de/ebusiness/ http://purl.org/goodrelations/ mhepp@computer.org 14.09.2010 28
  • 29. Both Sides Can Help Build a Bridge 14.09.2010 29
  • 30. Why is GoodRelations not part of the Linked Open Data cloud diagram? Is GoodRelations data linked data after all?
  • 31. 14.09.2010 Ontology Economics Hepp, Martin: Possible Ontologies: How Reality Constrains the Development of Relevant Ontologies, in: IEEE Internet Computing, 31 Vol. 11, No. 1, pp. 90-96, Jan-Feb 2007
  • 32. GoodRelations Design Principles • Keep simple things Lightweight Heavyweight simple and make Web of Data Web of Data complex things possible LOD OWL DL • Cater for LOD and OWL RDF + a little bit DL worlds • Academically sound • Industry-strength engineering • Practically relevant 14.09.2010 32
  • 34. GoodRelations #2 of all Web Ontologies …and this does not yet include the > 10 Mio. offers from Amazon and eBay! 14.09.2010 34
  • 35. GoodRelations #2 of all Web Ontologies 14.09.2010 35