Mapping the genome of bacteria

2,498 views

Published on

Method of the Mapping of bacterial genome

Published in: Health & Medicine, Technology
1 Comment
13 Likes
Statistics
Notes
No Downloads
Views
Total views
2,498
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
152
Comments
1
Likes
13
Embeds 0
No embeds

No notes for slide
  • مپینگ یعنی: تعیین محل ژنها روی کروموزوم و مشخص شدن فاصله ی بین ژنها
  • مپینگ بوسیله ارتباط ژنتیکی، ترتیب ژنها و مارکرهارو روی کروموزوم نشون میده و این روش برپایه فرکانس به ارث رسیدن یک ژن استوراه.
  • مپینگ فیزیکی، به تعیین فاصله ژنها بر اساس تعداد نوکلئوتید می پردازه.
  • نقشه فیزیکی به سه روش: ....و در نهایت به سکوئنسینگ ختم میشه.
  • قانون ترتیب مستقل:اللهایژنهایمختلفهنگامجداشدنازهمبهطور مستقل عملمیکنند.بطور مثال در فردی ک گروه خونی A داره و چشمهای قهوه ای، ژم مسئول این دو خصوصیت بطور مستقل ازهم منتقل میشن و نه وابسته به هم. ولی همه ی ژن ها هم اینچنین نیستن.
  • ژنهای موجود روی یک کروموزوم، ژنهای مرتبط یا linked genesگفته میشن. چون طبق نظریه مندل همه ی کروموزوم در زمان میتوز بصورت یکپارچه و بدون تغییر منتقل میشه
  • نوترکیبی پدیده ایه ک قانون مندلو نقض میکنه. و باعث تغییر در ترتیب ژنها میشه
  • در مورد ژنهایی ک کنار هم نیستن احتمال بروز نوترکیبی بیشتره. برعکس، ژنهایی که نزدیک هم هستن احتمال اینکه به صورت یک بلوک منتقل بشن بیشتره.
  • این شاخص متناسب با فاصله بین دو ژنه و بصورت درصد بیان میشه
  • ژنهای نزدیک هم فرکانس کمتری دارنمعنی فرکانس 1درصد اینه ک فقط 1درصد اولاد در ژنهای هدف بررسی دارای تفاوت هایی با والد خودشون بودن.
  • برعکس، ژنهایی ک دور ازهم روی یک کروموزوم و یا روی کروموزومهای متفاوت قرار دارند، با حداکثر فرکانس نوترکیبی ک مقدار آن برار با 50درصد است، روبرو هستن.
  • توماس مرگان، بعد از بررسی های زیاد روی نوترکیبی در خصوصیات مگس میوه، به یک مقیاس ژنتیکی دست پیدا کرد. امروزه به این واحد سنتی مرگان گفته میشه و عبارت است از فاصله دو ژن ک فرکانس نوترکیبی اونا برابر با 1درصد باشه. به سنتی مرگان، یک map unit هم گفته میشه.
  • به یک توالی قابل تشخیص در دی ان ای، یک مارکر ژنتیکی گفته میشه. مثل توالی های مورد هدف آنزیم های محدود کننده.
  • این آنزیمها در باکتری ها عمدتاً به عنوان دفاعی در برابر ژنوم ویروسها تولید میشن.
  • گاهی برای بدست آوردن توالی هدف لازمه از آ.م زیادی استفاده بشه. این توالی ها بعداً بعنوان مارکر هایی برای پیدا کردن رابطه بین ژنها استفاده میشه. بررسی این ارتباطات وسیله ای برای ترسیم نقشه ژنتیکی ژنومه.
  • اگرچه گاهی ژنهای مسئول یک خصوصیت فنوتیپی قابل تشخیص نباشن ولی با شناخت مارکر های وابسته به اون ژن میشه محل اون ژنو فهمید.
  • اگر دوتاژن بهم نزدیک باشن امکان اینکه توسط باکتریوفاژها بطور همزمان منتقل بشن زیاده ک به این کوترانسداکشن میگیم
  • در مپینگ از کوترانسداکشن برای تعیین ترتیب و فاصله ژنهای نزدیک بهم استفاده میشه.
  • کلون وکتور قطعه ای کوچک از دی ان ایه ک از ویروس یا پلاسمید یا سلول دیگری گرفته شده و قادره در سلول هدف دوام بیاره و در دی ان ای اون وارد بشه.
  • وکتور قادره به دی ان ای هدف وارد بشه و یا ازون خارج بشه. این کار ممکنه با استفاده از یک آنزیم.محدود کننده انجام بشه.
  • وکتورها انواع مختلف دارن ولی عمدتاً از پلاسمیدها استفاده میشه. در ابتدا از ای.کولا ی برای کلون کردن ژن استفاده شد و وکتورهای ژنها هم پلاسمید ها، باکتریوفاژها، کاسمیدها و یا از کروموزومهای باکتریایی صناعی یا بکس استفاده شد.
  • در مواردی ک از قطعه دی ان ای ناپایداره و در ای.کولای هضم میشه، مثل وقتی ک طول دی ان ای زیاده، از وکتور یوکاریوتی مثل کروموزوم صناعی مخمری یا یاکس استفاده میشه
  • کاسمیدها، پلاسمیدهایی هستن ک بخشی از باکتریوفاژ لاندارو در خودشون دارن. این بخش دارای توالی cos هستش و باعث بسته بندی شدن دی ان ای در کپسید فاژ لاندا میشه. از کاسمیدها عمدتاً برای کلون کردن قطعات بیشتر از 28 تا 45kb استفاده میشه.
  • فاسمیدها بر پایه پلاسمید اف در باکتری ها ساخته میشن. و قادره دی ان ای تا 40kb منتقل کنه.
  • اگه خروج فاکتور اف از کروموزوم دقیق نباشه به اون اف پریم میگیم. در شکل چون ژن لک همراه اف پریمه به اون اف پریم لک گفته میشه.
  • اف پریم میتونه با اف منفی ها کانژوگه بشه و در این صورت میزبان به صورت مروپلوئید درمیاد. به این روش انتقال ژن، اف داکشن یا سکس داکشن هم گفته میشه.
  • بک ها بر پایه پلاسمی اف ساخته میشن و برای ترنسفورم و کلون ژن در باکتری ها، خصوصاً ای.کولای استفاده میشن.
  • بک قادره از 150 تا 350kb رو منتقل کنه.پک هم نوع دیگه وکتوره ک بر پایه پلاسمید پی وان سخته شده
  • از بک معمولاً در پروژه های سکانس ژنوم اورگانیزم ها استفاده میشه، مثل پروژه ژنوم انسان.یک قطعه کوچیک دی ان ای اورگانیزم بعد ورود به یک بک، کلون میشه و سپس سکانس میشه. سپس قسمت های سکانس شده توسط نرم افزار کامپیوتری به هم مرتبط میشن و توالی ژنوم اورگانیزم مشخص میشه.
  • ترانسفکشن به انتقال اسید نوکلئیک به میزبان با استفاده از وکتورهای غیر ویروسی گفته میشه. میکرواینجکشن هم ب انتقال مواد با استفاده از میکروپیپت به داخل سلول زنده گفته میشه. این میکرو پیپت ها از 0.5 تا 5 میکرومتر قطر دارن. و حتی میتونن موادو مستقیم به هسته منتقل کنن.
  • یاک هم کروموزوم ساختگی مخمریه ک دی ان ای 100 تا 3000kb رو منتقل میکنه. و برای کلون ژن های بزرگ استفاده میشه.
  • یاک در واقع یک پلاسمیده ک توسط آنزیم محدود کننده بصورت دو قطعه خطی در میاد. ژن مورد نظر توسط آنزیم دی ان ای لیگاز به دو قطعه متصل میشه و کلاً تشکیل یک دی ان ای خطی میدن.
  • وکتور های مخمری مثل یاک ، وای ال پی ،و وای ای پی مزیت هایی نسبت به بک دارن و اون اینه ک از اینها میشه برای بررسی پروتئین هایی ک ب تغییرات پس از ترجمه نیاز دارن، در یوکاردوت ها استفاده کرد. ولی نسبت به بک از پایداری کمتری برخوردارن.
  • تعیین نقشه ژنتیکی با استفاده از کانژوگاسیون، با استفاده از سویه های اچ اف آر حاصل از ترکیب اف + و اف – شروع شد.
  • زمان انتقال اولین ژن، زمان 0 در نظر گرفته میشه و به ترتیب....زمان انتقال برای هر ژن، در صورت تکرار آزمایش، مشابه زمان قبله و این نشون میده ک محل این ژنها روی کروموزومه.از محیط انتخابی برای آنالیز ترانسکانژوگانت ها استفاده میشه.
  • در هر سویه اچ اف آر، کروموزوم دارای یک پلاسمید اف هست ک با توجه ب سویه، جهت گیری و محل آریجین اون متفاوته. با در نظر گرفتن نواحی اورلپ در توالی های ترنسفر شده در طول کانژوگاسیون، کروی بودن ژنوم پروکاریوت اثبات میشه.
  • ترانسفورماسیون وقتی انجام میشه ک انجام ترانسداکشن و کانژوگاسیون مقدور نباشه. برخی باکتری ها مثل باسیلوس سرئوس بدون انجام هیچ تریتی توانایی دریافت دی ان ای دارن ولی برخی دیگه فقط تحت شریط خاصی قادرن دی ان ای خارجیو دریافت کنن. دی ان ای هدف بعد از تخلیص، خورد میشه و به محیطی ک باکتری درون وجود داره اضافه میشه. اورگانیزم هدف و باکتری میزبان دارای تفاوتهای فنوتیپی هستن و در نتیجه از لحاظ ژنوتیپی هم باهم متفاوتن. اگر نوترکیبی انجام بشه باتوجه به اینکه باعث بروز تغییر در خصوصیات فنوتیپی میشه، پس قابل تشخیصه.
  • ترانسفورماسیون کامل فقط در تعداد کمی از سلول ها اتفاق میوفته.پس از تکثیر نهایی دو ژنوتیپ بوجود میاد ک از طریق تفاوتهای فنوتیپی قابل تشخیصن.
  • ترانسفورماسین به سه منظور انجام میشه: یکی اینکه آیا ژنها به هم متصل هستن یا نه، دوم اینکه ترتیب اونا چطوره و سوم اینکه فاصله بین ژنها چقدره.
  • دی ان ای های کوچکتر ک فقط دارای چند ژن هستن بهتر ترانسفورم میشنو انتقال همزمان دو ژن نشون میده ک این ژنها به هم نزدیک هستن. درشکل دو ژن پی و پیو کنار هم هستن. پس همیشه با هم ترانسفورم میشن. اگر گاهی اوقات ژن او با کیو ترانسفورم بشه اونوقت باید ترتیب ژنهارو بر اساس مقایسه فرکانس نوترکیبی دوتا ژن محاسبه کرد.
  • اینجا هم انتقال همزمان چند ژن و بررسی فرکانس نوترکیبی اونها در مقایسه باهم، زمینه تعیین دقیق نقشه ژنتیکی باکتری رو فراهم میکنه.
  • برخی فاژها فقط نواحی خاصی از ژنومو ترنسدیوس می کنن. مثل فاژ لاندا ک در محل attLanda وارد میشه. این توالی بین ژنهای بیو و گال قرار داره. و پروفاژ اون توسط یک پر.تئین فاژ رپرسور حفظ میشه. اگر پروفاژ تحریک بشه توسط کراس اور خارج میشه. خروجش معمولاً دقیقه ولی گاهی بخشی از دی ان ای ای.کولایو هم خارج میکنه. چون این فاژ همه ی ژنوم فاژو نداره به اون فاژ دیفکتیو یا ناقص گفته میشه. این فاژ برای تکثیر خودش وابسته به فاژهای سالمه.
  • چون تکثیر این فاژ بخاطر وابستگیش ب فاژهای سالم، کمه، کمتر باعث لیز میزبان میشه. سویه های سالم در محل نرمال ورود وارد میشن. بعد فاژهای ناقص وارد توالی فاژهای ناقص می شن. و میزبان دابل لایزوژن میشه. این میزبان هتروزایگوته و قادره گالاکتوزو تخمیر کنه. در اثر تحریک سویه کامل، اون میتونه به لایتیک تبدیل بشه. وقتیکه میزبان با سویه ناقص آلوده بشه و ژن گال هم بصورت دابل کراس اور وارد ژنوم میزبان بشه، این انتقال پاداره.
  • مپینگ ژنوم باکتریو فاژ ها توسط 2 تا 4 ژن انجام میشه و باکتری رو با چندین ژنوتیپ فاژ آلوده میکنن. تشخیص تغییرات ژنوتیپی برپایه تغییرات ظاهری پلاک هاست. ژنهای اچ و آر توسط ای.کولای سویه بی ک با هر دو ژنوتیپ .... و ... آلوده شده صورت میگیرد.
  • h+ lyses ONLY E. coli strain Br is a mutant producing large distinct plaques).h lyses both B and B/2 E. coli, r+ produces the wild-type small plaque with fuzzy borders).
  • مپینگ داخل ژنی ک به تشخیص جهش های داخل یک ژن میپردازه.
  • برای بررسی ژن آرتوو استفاده شده. فاژهای تی فور با موتاسیونهای متفاوت در ناحیه آرتوو و با خصوصیات توانایی تولید پلاک بزرگ استفاده شدن. ژنوتیپ r+ توانایی آلوده کردن strains B and K12(λ). ای.کولای را داره و زنوتیپ r|| برای فاژ K12(λ) مجاز نیست.
  • این دانشمند 60 ایزوله مستقل آر توو رو جداسازی کرد ک همه ی حالت های موتاسیون در این ژنو پوشش میدن. یک نقشه خطی از اطلاعات حاصل از نوترکیبی تهیه کرد. و در مطالعات بعدی هم نوترکیبی بازهای مجاورو بررسی کرد و نشان داد ک جفت بازها واحدهای موتاسیون و نوترکیبی هستن.
  • بیشترین فرکانس نوترکیبی بین سویه های آرتوو 50درصد بوده. کمترین فرکانس نوترکیبی 0.01% بوده ک باتوجه به طول ژنوم این فاصله برابر با 3 bp بوده.
  • در نهایت موفق شد 3000 موتانت آرتوو را تفکیک کند. برای یسته بندی راحت تر این داده ها از مپینگ حذفی استفاده کرد. برخی موتانتها در کراس شدن با سویه های دیگر به حالت اولیه برنمی گشتند. اینها موتانهای حذفی بودند. این دانشمند از بین موتانهای حذفی را به 7دسته اصلی تقسیم کرد. و سایر موتانها را مرحله به مرحله بر اساس مقایسه با این موتانهای حذفی تفکیک کرد.
  • Benzer’s work with > 3,000 mutants divided the rIIregion into > 300 mutable sites separable by recombination. Certain sites in the region (hot spots) have high rates of independent point mutations.
  • تعیین ژن با استفاده از تست های کامل سازیاین تستها مشخص می کنن ک چطور تعدادی از ژنهای دخیل در موتاسیون، در تغییرات فنوتیپی نقش دارنژن آرتوو در فاژ تی فور دارای دو ناحیه A و B است. موتاسیون در هر یک ازین دوژن باعث تر مورفولوژی پلاک می شود.
  • دراین آزمایش هر دو سویه در K12(λ) ای.کولای کشت داده شدن و هیچکدام قادر به رشد روی این محیطها نبودند. نسل اول نقص های خود را باتکمیل فعالیت یکدیگ را کامل کردند و یا حتی ممکن است نوترکیبی رخ دهد. اگر پلاکی دیده نشود معنی آن اینست ک هردو ژن روی یک ناحیه هستند.
  • این دانشمند نشان داد ک دو ناحیه عملکردی روی آرتوو وجود دارد ک فعالیت هر دو برای اجرای چرخه لایتیک لازمه. موتاسیونهای نقطه ای یا موتاسیونهای حذفی، اثری مشابه روی تست تکمیلی داشت. اگر آلل ها روی نواحی عملکردی متفاوت باشن در حالت ترانس قرار دارن و برعکس.
  • i. The fine-structure map indicates the boundaries of rIIA and rIIB. ii. Point mutants and deletion mutants in both rIIA and rIIB give the same results in complementation tests. iii. Deletions that span rIIA and rIIB do not complement either rIIA or rIIB.
  • اودر ادامه سیسترون را به عنوان واحد عملکردی دی ان ای ک یک آر ان ای کامل را کد میکند، معرفی کرد. و میشود سیسترون ها را به عنوان ژن هم در نطر گرفت.
  • Mapping the genome of bacteria

    1. 1. Dr.Nasr Meisam.Roozbahani
    2. 2. Genome mapping  Introduction: locating of a specific gene to particular region of a chromosome and determining the location of and relative distances between genes on the chromosome.  There are two types of maps: genetic linkage map and physical map.
    3. 3. Genome mapping  The genetic linkage map shows the arrangement of genes and genetic markers along the chromosomes as calculated by the frequency with which they are inherited together.
    4. 4. Genome mapping  The physical map is representation of the chromosomes, providing the physical distance between landmarks on the chromosome, ideally measured in nucleotide bases.
    5. 5. Genome mapping  Physical maps can be divided into three general types: chromosomal or cytogenetic maps, radiation hybrid (RH) maps, and sequence maps.  The ultimate physical map is the complete sequence itself.
    6. 6. Law of independent assortment  Mendel: States that genes are transmitted from parents to offspring independently of one another.  If a person has blood group A (e.g. genotype AO) and brown eyes (e.g. genotype Bb, where B is the allele for brown and b is the allele for blue eyes), the AO alleles are transmitted to the offspring independently of the Bb alleles.  However, not all genes are inherited independently of one another.
    7. 7. Linked genes  Genes that are located on the same chromosome and are described as linked genes.  If each chromosome were to be transmitted from parent to offspring as a whole and unaltered structure, it would be expected that all the genes located on the same chromosome would be transmitted together as a block and not independently of one another as proposed in Mendel's law.
    8. 8. Recombination  However, linked genes are not always transmitted en bloc because of the phenomenon of recombination.  One of the fundamental events that occur in meiosis is crossing over in which homologous chromosomes exchange segments causing a reshuffling of genes.
    9. 9. GENETIC DISTANCE  If genes are far apart on the same chromosome, it is likely that recombination occurs. Conversely, if they are very close together, they are more likely to be transmitted as a block .
    10. 10. Frequency of recombination  The frequency of recombination of two genes is proportional to the distance between them.  The frequency with which recombination occurs in the offspring is expressed as a percentage.
    11. 11. Frequency of recombination  Genes which are very close together (closely linked) will have a very small recombination frequency (e.g. 1%).  A recombination frequency of 1% means that only one out of 100 offspring was the combination of two genes different from that in their parents.
    12. 12. Frequency of recombination  In contrast, genes that are very far apart on the same chromosome or those that are on different chromosomes are equally likely to be transmitted together or separately and so would have a recombinant frequency of 50%.
    13. 13. centi-Morgan  The centi-Morgan which is defined as the distance between two genes in which recombination occurs with a frequency of 1%.  The unit of gene distance is also called a map unit.
    14. 14. CONSTRUCTING A GENE MAP
    15. 15. Genetic Markers  Genes can be mapped by linkage studies with polymorphic markers, which are nucleotide sequences identifiable at specific sites along the genome.  Numerous markers have been identified throughout the genome using restriction endonucleases and so it is possible to construct maps of disease genes in relation to closely linked markers.
    16. 16. Restriction endonuclease  Restriction endonucleases are naturally occurring enzymes produced by bacteria as a defence against invasion by viruses. The bacterial endonucleases cut the viral DNA thus restricting its further proliferation.
    17. 17. Restriction endonuclease  Using a large number of restriction endonucleases, it is likely that one finds one or more RFLPs close to the gene of interest.  Such RFLPs are then used as markers for linkage studies with known genes. Linkage studies have been one of the most important tools for gene mapping.
    18. 18. Marker!!  Although the gene causing a particular trait may not be known it is possible to identify markers which are very closely linked to it.
    19. 19. Cotransduction  If two genes are close together along the chromosome, a bacteriophage may package a single piece of the chromosome that carries both genes and transfer that piece to another bacterium.
    20. 20. Cotransduction  In genetic mapping studies, cotransduction is used to determine the order and distance between genes that lie fairly close to each other.
    21. 21. Cloning vector  A cloning vector is a small piece of DNA, taken from a virus, a plasmid, or…, that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes.
    22. 22. Cloning vector  The vector therefore contains features that allow for the convenient insertion or removal of DNA fragment in or out of the vector, for example by treating the vector and the foreign DNA with a restriction enzyme.
    23. 23. Types of cloning vectors  There are many types of cloning vectors, but the most commonly-used ones are genetically engineered plasmids.  Cloning is generally first performed using Escherichia coli, and cloning vectors in E. coli include plasmids, bacteriophages (such as phage λ), cosmids, and bacterial artificial chromosomes (BACs).
    24. 24. Types of cloning vectors  Some DNA however cannot be stably maintained in E. coli, for example very large DNA fragment, and other organisms such as yeast may be used. Cloning vector in yeast include yeast artificial chromosomes (YACs).
    25. 25. Cosmid  Cosmids are plasmids that incorporate a segment of bacteriophage λ DNA that has the cohesive end site (cos) which contains elements required for packaging DNA into λ particles.  It is normally used to clone large DNA fragments between 28 to 45 Kb.
    26. 26. Fosmid  Fosmids are similar to cosmids but are based on the bacterial F-plasmid.  Fosmids can hold DNA inserts of up to 40 kb in size; often the source of the insert is random genomic DNA.
    27. 27. F’ Factors ► If excision of F from the chromosome is not precise, a small section of host chromosome may be carried with the plasmid, creating an F’ (F-prime) plasmid. An F’ plasmid is named for the gene(s) it carries, e.g., F’ (lac).
    28. 28. F’ Factors ► F’ cells can conjugate with F- cells, and thus introduce the bacterial gene(s) it carries. The recipient already has a set of bacterial genes, and so will be merodiploid (partially diploid) for those that are introduced. This is F-duction (sometimes called sexduction).
    29. 29. Bacterial artificial chromosome (BAC)  A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid (or F-plasmid), used for transforming and cloning in bacteria, usually E. coli.
    30. 30. Bacterial artificial chromosome (BAC)  The bacterial artificial chromosome's usual insert size is 150-350 kbp.  A similar cloning vector called a PAC has also been produced from the bacterial P1-plasmid.
    31. 31. Bacterial artificial chromosome (BAC)  BACs are often used to sequence the genome of organisms in genome projects, for example the Human Genome Project.  A short piece of the organism's DNA is amplified as an insert in BACs, and then sequenced. Finally, the sequenced parts are rearranged in silico, resulting in the genomic sequence of the organism.
    32. 32. Common gene components of BAC oriS, repE - F for plasmid replication and regulation of copy number. parA and parB for partitioning F plasmid DNA to daughter cells during division and ensures stable maintenance of the BAC. A selectable marker for antibiotic resistance; some BACs also have lacZ at the cloning site for blue/white selection. T7 & Sp6 phage promoters for transcription of inserted genes.
    33. 33. Bacterial artificial chromosome (BAC)  Electroporation  Transformation  Transfection  Microinjection
    34. 34. Bacterial artificial chromosome (BAC)  Transfection is the process of deliberately introducing nucleic acids into cells. The term is used notably for nonviral methods in eukaryotic cells.  Microinjection refers to the process of using a glass micropipette to insert substances at a microscopic or borderline macroscopic level into a single living cell. It is a simple mechanical process in which a needle roughly 0.5 to 5 micrometers in diameter penetrates the cell membrane and/or the nuclear envelope.
    35. 35. Yeast artificial chromosome  A yeast artificial chromosome (YAC) is a vector used to clone DNA fragments larger than 100 kb and up to 3000 kb.  YACs are useful for the physical mapping of complex genomes and for the cloning of large genes.
    36. 36. Yeast artificial chromosome  A YAC is built using an initial circular plasmid, which is typically broken into two linear molecules using restriction enzymes; DNA ligase is then used to ligate a sequence or gene of interest between the two linear molecules, forming a single large linear piece of DNA.
    37. 37. Yeast artificial chromosome advantage  Yeast expression vectors, such as YACs, YIps (yeast integrating plasmids), and YEps (yeast episomal plasmids), have an advantage over bacterial artificial chromosomes (BACs) in that they can be used to express eukaryotic proteins that require posttranslational modification.  BUT YACs are significantly less stable than BACs.
    38. 38. Using Conjugation to Map Bacterial Genes  Conjugation experiments to map genes begin with appropriate Hfr strains selected from the progeny of F+ X F- crosses.
    39. 39. Interrupted-mating experiment
    40. 40. Interrupted-mating experiments with a variety of Hfr strains, showing that the E. coli linkage map is circular
    41. 41. Genetic Mapping in Bacteria by Transformation  Transformation is used to map genes in situations where mapping by conjugation or transduction is not possible.  Donor DNA is extracted and purified, broken into fragments, and added to a recipient strain of bacteria. Donor and recipient will have detectable differences in phenotype, and therefore genotype.  If the DNA fragment undergoes homologous recombination with the recipient’s chromosome, a new phenotype may be produced. Transformants are detected by testing for phenotypic changes.
    42. 42. Transformation in Bacillus subtilis Chapter 14 slide 42
    43. 43. Transformation experiments are used to determine:  Whether genes are linked (physically close on the bacterial chromosome).  The  The order of genes on the genetic map. map distance between genes. Recombination frequencies are used to infer map distances.
    44. 44. Demonstration of determining gene order by cotransformation Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.
    45. 45. Transduction Mapping of Bacterial Chromosomes  Closely linked genes are cotransduced at high frequency, allowing a detailed genetic map to be generated. For example: (1) Of the leu+ selected transductants, 50% have aziR and 2% have thr+. (2) Of the thr+ selected transductants, 3% have leu+, and 0% have aziR. (3) This gives the map order: thr--leu------azi.
    46. 46. Specialized Transduction   Specialized transduction is useful for moving specific genes between bacteria, but not for general genetic mapping. Some phages transduce only certain regions of the chromosome, corresponding with their integration site(s). An example is λ in E. coli: i. Excision is usually precise. ii. Rarely excision results in genetic exchange, with a fragment ofλDNA remaining in the E. coli chromosome, and some bacterial DNA (e.g., gal+) added to theλchromosome. iii. The resulting transducing phage is designated λd gal+ (d for defective, since not all phage genes are present). iv. λd gal+ can replicate and lyse the host cell, since allλgenes are present either on the phage or bacterial chromosome.
    47. 47. Specialized Transduction  Because transducing phage are only rarely produced, a low- frequency transducing (LFT) lysate results. Infection of gal bacterial cells results in two types of transductants: i. ii. Unstable transductants result when wild-type λintegrates first at its normal attλ site. λd gal+ then integrates into the wild-typeλ, producing a double lysogen with both types of λ integrated. Stable transductants are produced when a cell is infected only by a λd gal+ phage, and the gal+ allele is recombined into the host chromosome by double cross-over with gal.
    48. 48. Specialized transduction by bacteriophage
    49. 49. Specialized transduction by bacteriophage
    50. 50. Mapping Genes of Bacteriophages 1. Phage genes are mapped by 2-, 3- or 4-gene crosses, involving bacteria infected with phages of different genotypes. a. Progeny phage are counted using a plaque assay in which each phage produces a cleared area in a bacterial lawn. b. Distinguishable phage phenotypes include mutants with different plaque morphology. An example is strains of T2 differing in plaque morphology and/or host range. c. The h and r genes are mapped by infecting E. coli strain B simultaneously with two phages, h+ r and h r+.
    51. 51. The principles of performing a genetic cross with bacteriophages
    52. 52. Fine-Structure Analysis of a Bacteriophage Gene  Intragenic mapping determines mutation sites within genes.
    53. 53. Fine-Structure Analysis of a Bacteriophage Gene  Benzer’s fine-structure mapping of phage T4 used similar experiments involving the rII gene. a. Different rII mutations of T4 were used, each with the characteristic large clear plaques and limited host range. b. T4 with the wild-type r+ gene infects E. coil strains B and K12(λ). For rII T4, strain B is permissive but K12(λ) is nonpermissive.
    54. 54. Recombination Analysis of rII Mutants 1. 2. 3. Benzer’s fine-structure mapping involved 60 independently isolated rII mutants, which were crossed in all possible combinations, using E. coli B as the permissive host. A linear map was constructed from the recombination data from all crosses of the 60 rII mutants. Later experiments have observed recombination between adjacent base pairs, indicating that the base pair is both the unit of mutation and the unit of recombination. This replaced the older idea that the gene was indivisible.
    55. 55. Benzer’s general procedure for determining the number of r+ recombinants from a cross involving two rII mutants of T4 Reversion To Wild tye
    56. 56. Preliminary fine-structure genetic map of the rII region of phage T4 derived by Benzer from crosses of an initial set of 60 rII mutants Chapter 14 slide 57 Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings. 台大農藝 系 遺傳 學 601 20000
    57. 57. Deletion Mapping 1. Benzer eventually mapped over 3,000 rII mutants. A deletion mapping technique was used to simplify these studies. a. Some of the mutants did not revert, nor did they recombine to produce r+ phage in crosses with a variety of rII mutants. These were deletion mutants. b. The systematic approach crossed each unknown rII mutant with a set of seven standard deletion mutants defining the seven main segments of the rII region. c. Once a region for the mutation was known, the new mutant was crossed with members of the relevant secondary set of reference deletions. Analysis of recombination or nonrecombination enabled more precise localization of the mutation site
    58. 58. Benzer’s experiment: Segmental subdivision of the rII region of phage T4 by means of deletion
    59. 59. Fine-structure map of the rII region derived from Benzer’s experiments
    60. 60. Defining Genes by Complementation (Cis-Trans) Tests 1. The complementation test determines how many genes are involved in a set of mutations that produce a given phenotype. 2. The T4 rII region has two genes, rIIA and rIIB. A mutation in either gene produces the rII phenotype for both plaque morphology and host range.
    61. 61. Defining Genes by Complementation (Cis-Trans) Tests 3. In Benzer’s work, nonpermissive strain K12(λ) was infected with pairs of rII mutants. Neither can grow alone in this strain. a. If progeny are produced, the two mutants have complemented each other by providing different gene functions, either by genetic recombination (producing a few plaques) or complementation (lysing the entire lawn) (Figure 14.23). i. Infect bacterium with two phage genomes. Genotype of one is rIIA+ rIIB, and of the other is rIIA rIIB+. ii. One phage provides the rIIA product, the other the rIIB product, and so the phage lytic cycle occurs. b. If no progeny are produced, both mutations are in the same functional unit. Both mutants produce the same defective product (e.g., the rIIA product), and so the phage lytic cycle cannot occur.
    62. 62. Defining Genes by Complementation (Cis-Trans) Tests c.Benzer’s work showed two functional units for the rII phenotype, the complementation groups rIIA and rIIB. Both gene products must be produced for the lytic cycle to occur. d. Alleles may be arranged two different ways in cistrans complementation experiments: e. When the mutant alleles are on two different chromosomes, as in the complementation experiment above, they are in the trans configuration.
    63. 63. Complementation tests for determining the units of function in the rII region of phage T4
    64. 64. Complementation tests for determining the units of function in the rII region of phage T4
    65. 65. 4. Benzer called the genetic unit of function defined by a cis-trans complementation test a cistron. Defined as the smallest segment of DNA encoding an RNA, cistrons are now usually referred to as genes.
    66. 66. References  http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/ApplMapping.sht ml  Strachan T. (2011). Human molecular genetics / Tom Strachan and Andrew Read, 4th ed.  Haldi M, Perrot V, Saumier M, Desai T, Cohen D, Cherif D, Ward D, Lander ES. Large human YACs constructed in a rad52 strain show a reduced rate of chimerism. Genomics. 1994 Dec;24(3):478-84.  Bronson SK, Pei J, Taillon-Miller P, Chorney MJ, Geraghty DE, Chaplin DD.Isolation and characterization of yeast artificial chromosome clones linking the HLA-B and HLA-C loci.Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1676-80.
    67. 67. References  O'Connor M, Peifer M, Bender W (1989). "Construction of large DNA segments in Escherichia coli". Science 244 (4910): 1307–1312. doi:10.1126/science.2660262. PMID 2660262.  Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992). "Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector". Proc Natl Acad Sci USA 89 (18): 8794–8797. doi:10.1073/pnas.89.18.8794. PMC 50007. PMID 1528894.  Shizuya, H; Kouros-Mehr H (2001). "The development and applications of the bacterial artificial chromosome cloning system". Keio J Med. 50 (1): 26–30. PMID 11296661.  Stone NE, Fan J-B, Willour V, Pennacchio LA, Warrington JA, Hu A, Chapelle A, Lehesjoki A-E, Cox DR, Myers RM (1996). "Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene". Genome Research 6 (3): 218–225. doi:10.1101/gr.6.3.218. PMID 8963899.
    68. 68. References  Physical Mapping of Bacterial Genomes, MICHAEL FONSTEIN AND ROBERT HASELKORN*, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, JOURNAL OF BACTERIOLOGY, June 1995, p. 3361–3369 Vol. 177, No. 12, 0021-9193/95/$04.0010, Copyright q 1995, American Society for Microbiology
    69. 69. Thank You

    ×