Diode                                                         By megha agrawal                                            ...
to use a diode connected across the power supply input such that it only conducts if the power isconnected back to front. ...
I is the diode current,          IS is the reverse bias saturation current (or scale current),          VD is the voltage ...
What is the purpose of using In4148 diode:-              Its like a clamp circuit for protection.              Clamping di...
Tstg        storage temperature                                                   -65    +200     ºC    Tj          juncti...
Diode data sheet for alarm type project
Upcoming SlideShare
Loading in …5

Diode data sheet for alarm type project


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Diode data sheet for alarm type project

  1. 1. Diode By megha agrawal Ece,2nd year,b.tech,mnit jaipur.Defenation:- A diode is a two-terminal electronic component with an asymmetric transfer characteristic, with low (ideally zero) resistance tocurrent flow in one direction, and high (ideally infinite) resistance in the other.Function:- The most common function of a diode is to allow an electric current to pass in one direction (called the diodes forward direction),while blocking current in the opposite direction (the reverse direction). Thus, the diode can be viewed as an electronic version of a checkvalve. This unidirectional behavior is calledrectification, and is used to convert alternating current to direct current, including extractionof modulation from radio signals in radio receivers—these diodes are forms of rectifiers.Selecting a diode:- There are at least three parameters that you need to consider when selecting diodesfor use in yourprojects, these are:• Current-handling capability: Diodes can only pass a certain amount of currentwithout damage. Small “signal” diodes like the venerable 1N4148/1N914 can copewith about 200mA, Rectifier diodes like the 1N400 are good for an amp or so; forhigher ratings, you’ll find plenty of options at your favorite supplier.• Maximum reverse voltage: Diodes can only cope with a certain amount of reversebias (voltage) before they are damaged. Again, looking at our two usual suspects ofthe 1N4148 and 1N4004, the maximum reverse voltage is 100V and 400V,respectively.• Forward voltage drop: Nothing comes for free! When conducing (forward biased),the diode drops a certain amount of voltage across its terminals. This, of course,ends up as heat and so diodes have power limitations as well. The 1N4148 and1N4004 have similar forward voltage drops of 1V.A common use of a diode is to avoid damage to a piece of circuitry if the power is connected back tofront. When using diodes in this manner, you need to consider all three of the previously mentionedparameters, particularly the current-handling capability—is it high enough; and the forward voltagedrop —are you going to end up with a marginal supply voltage because of it? An alternative approach is
  2. 2. to use a diode connected across the power supply input such that it only conducts if the power isconnected back to front. A quick blow fuse must also be used so that the diode doesn’t stay conductingall this power for too long. The advantage of this approach is that you don’t get the forward voltagedrop,the drawback being you blow a fuse—and if your design is marginal, you may blow the diode, negatingthe protection circuit entirely. Some subtlety is called for with this one.Junction diodesMost diodes today are silicon junction diodes. A junction is formed between the p and n regions which is also called a depletion region.p–n junction diodeA p–n junction diode is made of a crystal of semiconductor. Impurities are added to it to create a region on one side that containsnegative charge carriers (electrons), called n-type semiconductor, and a region on the other side that contains positive charge carriers(holes), called p-type semiconductor. When two materials i.e. n-type and p-type are attached together, a momentary flow of electrons occurfrom n to p side resulting in a third region where no charge carriers are present. It is called Depletion region due to the absence of chargercarrier (electrons and holes in this case). The diodes terminals are attached to each of these regions. The boundary between these tworegions, called a p–n junction, is where the action of the diode takes place. The crystal allows electrons to flow from the N-type side (calledthe cathode) to the P-type side (called the anode), but not in the opposite direction.Current–voltage characteristicA semiconductor diode’s behavior in a circuit is given by its current–voltage characteristic, or I–V graph (see graph below). The shape of thecurve is determined by the transport of charge carriers through the so-called depletion layer or depletion region that exists at the p–njunction between differing semiconductors. When a p–n junction is first created, conduction-band (mobile) electrons from the N-doped regiondiffuse into the P-doped region where there is a large population of holes (vacant places for electrons) with which the electrons "recombine".When a mobile electron recombines with a hole, both hole and electron vanish, leaving behind an immobile positively charged donor(dopant) on the N side and negatively charged acceptor (dopant) on the P side. The region around the p–n junction becomes depletedof charge carriers and thus behaves as an insulator.However, the width of the depletion region (called the depletion width) cannot grow without limit. For each electron–hole pair thatrecombines, a positively charged dopant ion is left behind in the N-doped region, and a negatively charged dopant ion is left behind in the P-doped region. As recombination proceeds more ions are created, an increasing electric field develops through the depletion zone that acts toslow and then finally stop recombination. At this point, there is a "built-in" potential across the depletion zone.If an external voltage is placed across the diode with the same polarity as the built-in potential, the depletion zone continues to act as aninsulator, preventing any significant electric current flow (unless electron/hole pairs are actively being created in the junction by, for instance,light. see photodiode). This is the reverse bias phenomenon. However, if the polarity of the external voltage opposes the built-in potential,recombination can once again proceed, resulting in substantial electric current through the p–n junction (i.e. substantial numbers of electronsand holes recombine at the junction). For silicon diodes, the built-in potential is approximately 0.7 V (0.3 V for Germanium and 0.2 V forSchottky). Thus, if an external current is passed through the diode, about 0.7 V will be developed across the diode such that the P-dopedregion is positive with respect to the N-doped region and the diode is said to be "turned on" as it has a forward bias.A diode’s I–V characteristic can be approximated by four regions of operation.Shockley diode equationThe Shockley ideal diode equation or the diode law (named after transistor co-inventor William Bradford Shockley) gives the I–Vcharacteristic of an ideal diode in either forward or reverse bias (or no bias). The equation is: where
  3. 3. I is the diode current, IS is the reverse bias saturation current (or scale current), VD is the voltage across the diode, VT is the thermal voltage, and n is the ideality factor, also known as the quality factor or sometimes emission coefficient. The ideality factor n varies from 1 to 2 depending on the fabrication process and semiconductor material and in many cases is assumed to be approximately equal to 1 (thus the notation n is omitted).Numbering and coding schemesThere are a number of common, standard and manufacturer-driven numbering and coding schemes for diodes; the two most common beingthe EIA/JEDEC standard and the European Pro Electron standard:EIA/JEDECThe standardized 1N-series numbering EIA370 system was introduced in the US by EIA/JEDEC (Joint Electron Device Engineering Council)about 1960. Among the most popular in this series were: 1N34A/1N270 (Germanium signal), 1N914/1N4148 (Silicon signal), 1N4001-1N4007 (Silicon 1A power rectifier) and 1N54xx (Silicon 3A power rectifier)JISThe JIS semiconductor designation system has all semiconductor diode designations starting with "1S". application:- (1)radio demodulation:- an AM signal consists of alternating positive and negative peaks of a radio carrier wave, whose amplitude or envelope is proportional to the original audio signal. The diode (originally a crystal diode) rectifies the AM radio frequency signal, leaving only the positive peaks of the carrier wave. The audio is then extracted from the rectified carrier wave using a simple filter and fed into an audio amplifier ortransducer, which generates sound waves. (2) power conversion:- diodes are used to ac into dc signals…. (3) over voltage protection :- Diodes are frequently used to conduct damaging high voltages away from sensitive electronic devices. They are usually reverse-biased (non-conducting) under normal circumstances. When the voltage rises above the normal range, the diodes become forward-biased (conducting). Many integrated circuits also incorporate diodes on the connection pins to prevent external voltages from damaging their sensitive transistors. (4) logic gates :- can be combined with other components to construct AND and OR logic gates. (5) temperature measurement :- A diode can be used as a temperature measuring device, since the forward voltage drop across the diode depends on temperature, as in a silicon bandgap temperature sensor. From the Shockley ideal diode equation given above, (6)current steering:- Diodes will prevent currents in unintended directions. To supply power to an electrical circuit during a power failure, the circuit can draw current from a battery. An uninterruptible power supply may use diodes in this way to ensure that current is only drawn from the battery when necessary. Why use diode in circuits?;-
  4. 4. What is the purpose of using In4148 diode:- Its like a clamp circuit for protection. Clamping diodes on the are connected from the pin to VCC and GND.Any voltage higher than VCC + 0.5V will be forced down to VCC + Vd (Vd is the voltage drop over the diode) and any voltage below GND - Vd will be forced up to GND - Vd. diode in4148:- The 1N4148 diode is a fast, standard small signal silicon diode with highconductance used in signal processing. Its name follows the JEDEC nomenclature. The diode 1N4148is generally available in a DO-35 glass package and is very useful at high frequencies with a reverserecovery time of no more than 4ns. This permits rectification and detection of radio frequency signalsvery effectively, as long as their amplitude is above the forward conduction threshold of silicon (around0.7V) or the diode is biased.Specifications:- VRRM = 100 V (maximum repetitive reverse voltage) IO = 200 mA (average rectified forward current) IF = 300 mA (maximum direct forward current) VF = 1.0 V at 10 ma.[5] IFSM = 1.0 A (pulse width = 1 sec), 4.0 A (pulse width = 1 µsec) (non-repetitive peak forward surge current) PD = 500 mW (power dissipation) TRR < 4 ns (reverse-recovery time)Specifications of 1N4148 SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VRRM repetitive peak reverse - 100 V voltage VR Continuous reverse voltage - 100 V IR Continuous forward current Refers to graph 1 - 200 mA IFRM repetitive peak forward - 450 mA current IFSM non-repetitive peak forward square wave; Tj = 25 ºC prior to current surge; t = 1 µs Ptot total power dissipation Tamb = 25 ºC - 500 mW
  5. 5. Tstg storage temperature -65 +200 ºC Tj junction temperature - 200 ºCApplications of 1N4148 1N4148 can be act as a Relay protection diode, as in: Automatic Fan Controller, Motor Control Circuit, 1N4148 act as a reverse voltage protection diode, as in: Low Cost PC serial port IR Receiver. 1N4148 act as a temperature sensor, as in: Temperature Controlled Fan.