Building Data Start-Ups: Fast, Big, and Focused

Michael Driscoll
Michael DriscollCEO at Metamarkets
Building Data Start-ups:,[object Object],Fast, Big, and Focused,[object Object],Michael E. Driscoll, CTO, Metamarkets,[object Object],@medriscoll,[object Object],O’Reilly Strata Online | May 25, 2011,[object Object]
The Big Data ,[object Object],Opportunity,[object Object]
The Attack of the Exponentials,[object Object]
The Attack of the Exponentials,[object Object]
The Intersection of Three Forces,[object Object],Yields Higher Volume & Velocity of Data,[object Object],exponential economics,[object Object],sensor networks,[object Object],cloud computing,[object Object]
Data Value Must Exceed Data Cost,[object Object]
Data Value Must Exceed Data Cost,[object Object],... New Classes of Data are Now Valuable,[object Object]
Success on the Data Stack,[object Object],Services,[object Object],Analytics,[object Object],Data,[object Object]
Success on the Data Stack,[object Object],Fast,[object Object],Services,[object Object],Analytics,[object Object],Fast,[object Object],Data,[object Object]
Success on the Data Stack,[object Object],Fast, Big,[object Object],Services,[object Object],Big,[object Object],Analytics,[object Object],Fast,[object Object],Data,[object Object]
Success on the Data Stack,[object Object],Fast, Big, and Focused,[object Object],Focused,[object Object],Services,[object Object],Big,[object Object],Analytics,[object Object],Fast,[object Object],Data,[object Object]
#1: Fast,[object Object]
Success on the Data Stack,[object Object],Fast Data,[object Object],real-time,[object Object],Kdb,[object Object],Netezza,[object Object],Esper,[object Object],Vertica,[object Object],MongoDB,[object Object],speed,[object Object],InfoBright,[object Object],Aster,[object Object],MySQL,[object Object],MapR,[object Object],Greenplum,[object Object],Postgres,[object Object],batch,[object Object],Hadoop,[object Object],Services,[object Object],megabytes,[object Object],petabytes,[object Object],scale,[object Object],Analytics,[object Object],free, open-source,[object Object],Data,[object Object],commercial,[object Object]
Fast Data With Cheap Memory,[object Object],1964 – Univac 2k,[object Object],$51 million/MB,[object Object],2011 – DDR 1GB,[object Object],1 cent/MB,[object Object],data sources:  http://www.sharkyextreme.com & http://www.webservicessummit.com/Trends/TechTrends1/img11.html, plotted with ggplot2,[object Object]
#2: Big,[object Object]
Success on the Data Stack,[object Object],Big Analytics,[object Object],custom,[object Object],(hardware),[object Object],real-time,[object Object],speed,[object Object],Revolution R,[object Object],R,[object Object],custom ,[object Object],distributed,[object Object],SAP,[object Object],SAS,[object Object],SciPy,[object Object],SPSS,[object Object],batch,[object Object],Services,[object Object],megabytes,[object Object],petabytes,[object Object],scale,[object Object],Analytics,[object Object],free, open-source,[object Object],Data,[object Object],commercial,[object Object]
The Promise ofAnalytics,[object Object],extract,[object Object],learn,[object Object],predict,[object Object],DATA,[object Object],FEATURES,[object Object],MODELS,[object Object],“More data usually beats better algorithms.”,[object Object]
#3: Focused,[object Object]
Success on the Data Stack,[object Object],Focused Services,[object Object],Focused,[object Object],Services,[object Object],Analytics,[object Object],Data,[object Object]
“Real-time, large-scale analytics in a focused vertical.”,[object Object],credit:  Joe Reisinger, Metamarkets,[object Object]
Success on the Data Stack,[object Object],Fast, Big, and Focused,[object Object],Focused,[object Object],Services,[object Object],Big,[object Object],Analytics,[object Object],Fast,[object Object],Data,[object Object]
Thank You.  Questions?,[object Object],Michael E. Driscoll, CTO, Metamarkets,[object Object],@medriscoll,[object Object],O’Reilly Strata Online | May 25, 2011,[object Object]
1 of 22

More Related Content

Recently uploaded(20)

Building Data Start-Ups: Fast, Big, and Focused

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.

Editor's Notes

  1. I want to first thank O’Reilly for putting together this event, and all of you for tuning in from around the globe.The Data Opportunity in 2 parts:I. The Opportunity: Why now, what forces are driving the data explosionII. The Technology Stack: What does the Big Data technology stack look like – where are the opportunities and risks?Data is heavy.