Attention Allocation - from Search to Social


Published on

The Attention Economy is a concept unifying the different approaches to enter the user's mind, from search engines to spreading through the social graph of social networks to recommendations.

Published in: Technology, Design
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Attention Allocation - from Search to Social

  1. 1. Attention Allocation “Entering the User's Mind: Search Engines, Social Networks and Recommendations” Chris Dumke, September 2007, Waterloo - Canada
  2. 2. 1. The Attention Economy
  3. 3. Attention Economy <ul><li>Search Engines: quantifiable objectives </li></ul><ul><li>Social Networks: spreading through the “Social Graph” </li></ul><ul><li>Recommendations: layering votes </li></ul><ul><li>Portability: Users own their data </li></ul> made with “processing”
  4. 4. Web Growth
  5. 5. Search Growth
  6. 6. Search Traffic <ul><li>Continued growth of Search Traffic, especially Personal Finance, Car, Travel </li></ul>
  7. 7. Ad Spending/ Query Length <ul><li>Ad Spending by Medium </li></ul><ul><li>Increase in Average Query Length </li></ul>
  8. 8. Why Search Marketing? <ul><li>Continued growth of Internet usage </li></ul><ul><li>Most product searches involve search engines </li></ul><ul><li>Better ROI for your ad dollar – qualified customers, reach, cost and flexibility </li></ul><ul><li>Search is a unified approach for allocating qualified attention: Attention 2.0 </li></ul><ul><li>Better results through metrics: CPC, CPM, CTR, Conversions, Page Visits, Bounce Rates, Keyword Planning, Targeting etc. </li></ul>
  9. 9. Hard to classify <ul><li>Natural Web Search </li></ul><ul><li>Paid Search </li></ul><ul><li>Banners, Lead Generation </li></ul><ul><li>Market Intelligence </li></ul><ul><li>Web Metrics </li></ul><ul><li>Content Optimization </li></ul>
  10. 10. What is Information? Relativity (left) and Sky and Water I (right) by M.C. Escher articles, books, cartoons, databases, encyclopedias, files, gestures, holograms, images, journals, knowledge bases, laws, maps, numbers, ontologies, paintings, quizzes, rules, signs, texts, users, variables, web sites strange loops of circular definitions: data is information is knowledge is information is data
  11. 11. Alexa Ranking Global Germany
  12. 12. Facebook (DE)
  13. 13. Technorati – Web of People Source – State of the Blogosphere 2004,
  14. 14. Technorati – Blog Traffic Source – State of the Blogosphere 2006,
  15. 15. Technorati – Posting Volume Source – State of the Blogosphere 2004,
  16. 16. Search Traffic <ul><li>Directory Results: to all search players; Yahoo! to Altavista </li></ul><ul><li>Paid Results: Google provides to Ask, Lycos, iwon, Netscape, AOL Search, Hotbot; Yahoo! provides to MSN </li></ul><ul><li>Primary Search Results: Google provides to AOL Search, Hotbot, Netscape; Teoma provides to Ask and Lycos; Yahoo! provides to Altavista, Inktomi and alltheweb </li></ul><ul><li>Secondary Search Results: Ask provides to iwon, Hotbot </li></ul>
  17. 17. Ask <ul><li>Personal Technology – Walt Mossberg Review of Ask: </li></ul>
  18. 18. 2. Search Engine Optimization
  19. 19. Coverage
  20. 20. Coverage
  21. 21. Google <ul><li>Google multi-algorithmic </li></ul><ul><li>(full-text search, metadata, popularity measures) </li></ul><ul><li>Index size </li></ul><ul><li>Fast </li></ul>
  22. 22. Search Concepts <ul><li>Organic vs. Paid Search </li></ul><ul><li>Indexing </li></ul><ul><li>Precision vs. Recall </li></ul><ul><li>Phrases, Anti-Phrases, Stopwords </li></ul><ul><li>Ranking, Relevance </li></ul><ul><li>Keywords, Density, Prominence </li></ul><ul><li>Link Popularity, Page Rank </li></ul><ul><li>Metatags </li></ul>
  23. 23. Meaning
  24. 24. Search Types <ul><li>Navigational </li></ul><ul><li>Informational </li></ul><ul><li>Transactional </li></ul>Andrei Broder – Senior Engineer at IBM, formerly Alta Vista
  25. 25. Keyword Selection <ul><li>Example: ranks high for “cancer” but isn't in the Top 10 for specific results, i.e. “lung cancer” </li></ul>
  26. 26. Google Bombing <ul><li>The initiator chooses the word(s) to be bombed with. </li></ul><ul><li>The initiator chooses the target website. </li></ul><ul><li>The initiator creates a link like this: <a href=&quot; &quot;>keywords</a> </li></ul><ul><li>The initiator then places this link on pages indexed by Google, and may get others to do the same </li></ul><ul><li>Examples: “failure” for George W. Bush and “liar” for Tony Blair </li></ul>
  27. 27. Semantic Indexing <ul><li>Apple Powerbook and the Query “laptop” </li></ul>
  28. 28. What to do <ul><li>Get your pages in the search index </li></ul><ul><li>Choose the right keywords </li></ul><ul><li>Optimize your content </li></ul>
  29. 29. A) Indexing <ul><li>Inclusion ratio </li></ul><ul><li>Spider traps, Spider paths </li></ul><ul><li>Robots.txt directives </li></ul><ul><li>Javascript navigation </li></ul><ul><li>Dynamic URLs: no more than 2 dynamic parameters, no session Ids, URL mapping </li></ul><ul><li>Lynx </li></ul><ul><li>Redirects: 301, 302 </li></ul><ul><li>Slim down pages </li></ul><ul><li>Site maps </li></ul>
  30. 30. B) Keyword Planning <ul><li>Hot vs. cold </li></ul><ul><li>Overheated subjects/ meanings </li></ul><ul><li>Wordtracker </li></ul><ul><li>Yahoo keyword selector </li></ul><ul><li>Google sitemaps/ adwords </li></ul><ul><li>top/medium/low priority </li></ul><ul><li>stages </li></ul>
  31. 31. C) Content Optimization <ul><li>Search filters: language, country, region </li></ul><ul><li>Page factors: link popularity, popularity data, URL length and depth, freshness, page style </li></ul><ul><li>Query factors: keyword prominence, density, query intent (n/i/t), contextual relevancy, term rarity (idf), term proximity </li></ul><ul><li>Especially work on: title, description, body </li></ul><ul><li>Analyze your snippet </li></ul><ul><li>Writing style </li></ul>
  32. 32. Links <ul><li>Altavista, Compaq and IBM have advanced the “Bow-tie theory” </li></ul><ul><li>Core pages: Comprising 30% of the web - are the most linked to and linked-from on the web </li></ul><ul><li>Origination pages: 24 %, link into the core </li></ul><ul><li>Destination pages: 24 % </li></ul><ul><li>Disconnected pages: 22 % </li></ul>
  33. 33. Fraud <ul><li>Cloaking </li></ul><ul><li>Doorway pages </li></ul><ul><li>Link farms </li></ul><ul><li>Keyword stuffing </li></ul><ul><li>Example for all: </li></ul>
  34. 34. Google Adwords
  35. 37. Vickrey Auction (sealed-bid second price auction)
  36. 50. Integrated
  37. 51. Google Webmaster Tools
  38. 52. Web Analytics
  39. 53. Urchin.js
  40. 54. 3. Social Networks
  41. 55. Website Networks
  42. 57. Pre 9/11 U.S. Senate
  43. 58. Post 9/11 U.S. Senate
  44. 59. Another Harvard Drop-Out
  45. 60. The Ultimate Social Network
  46. 62. 30 Million active users
  47. 63. Why Facebook? Spreading through the Social Graph : I. News Feed II. Notifications and Requests III. Facebook Applications
  48. 83. 4. Recommendations
  49. 84. Recommendations <ul><li>Blog Roll </li></ul><ul><li>Tagging </li></ul><ul><li>Voting/ Ranking </li></ul><ul><li>Bookmarks </li></ul>
  50. 87. Flickr Tagging
  51. 88. 5. Outlook
  52. 89. Pace Layering Ambient Findability – Peter Morville, O'Reilly Press 2006
  53. 90. Anatomy of the Long Tail Chris Anderson retracted his estimate that 57% of Amazon's book sales are in the Long Tail. Full Description at -
  54. 91. Long Tail <ul><li>Search drives the Long Tail </li></ul><ul><li>Folksonomies/ Tags: linkedin, friendster, delicious, flickr, </li></ul><ul><li>The “Social Graph” </li></ul><ul><li>Big Concept: Push vs. Pull </li></ul>
  55. 92. Social Search vs. AI <ul><li>Yahoo! vs. Google </li></ul><ul><li> vs. Pandora </li></ul><ul><li>Folksonomy vs. brute force </li></ul>
  56. 93. Semantic Search Classes, Attributes, Parts, Subclasses etc. EconomyNet
  57. 94. Thank You! Any thoughts – give a shout at: [email_address] or on the blog: