Successfully reported this slideshow.
Genetic Engineering Biology - Edgar
Fig. 20-3-1 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1
Fig. 20-3-2 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 DNA fragm...
Fig. 20-3-3 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 One possi...
Fig. 20-9a Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode...
 
 
 
Fig. 20-10 Normal allele Sickle-cell allele Large fragment (b)  Electrophoresis of restriction fragments   from normal and...
 
Genetic Engineering & Cloning
Herbert Boyer and Stanley Cohen
 
 
 
Isolate DNA
Restriction Enzymes
 
Cut DNA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Recombinant DNA
 
 
 
 
 
 
Polymerase Chain Reaction
Polymerase Chain Reaction <ul><li>In  Scientific American , Mullis summarized the accomplishment: &quot;Beginning with a s...
 
 
 
 
PCR <ul><li>The PCR Song </li></ul><ul><li>The Concept. </li></ul>
GMO Lab
Step 1 <ul><li>Identify protein that can improve crop. </li></ul><ul><ul><li>Bt crops: produce delta-endotoxin which is le...
Step 2 <ul><li>Isolate gene – Clone </li></ul>
Step 3 <ul><li>Engineer gene so that crop will “read” it. </li></ul><ul><ul><li>Removing interons, and add promoter Caulif...
Step 3 <ul><ul><li>Add terminator: NOS terminator from  Agrobacterium tumefaciens  </li></ul></ul>
Get the Gene into the Crop <ul><li>Agrobacterium tumefaciens  Crown Gall Disease </li></ul>
Fig. 12-8a-1 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Rec...
Fig. 12-8a-2 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Rec...
Fig. 12-8a-3 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Rec...
2 Primers <ul><li>GMO Primers: Duplex PCR:  </li></ul><ul><ul><li>CaMV 35S Promoter </li></ul></ul><ul><ul><li>NOS Termina...
Gel Electrophoresis <ul><li>1: non-GMO food with plant primers. </li></ul><ul><li>2: non-GMO food with GMO primers </li></...
The Questions <ul><li>Is Genetically Modified food safe to eat? </li></ul><ul><li>Just how radical is this new technology?...
GMO <ul><li>PBS Harvest of Fear:  GM Fish   </li></ul>
11,497 4700 2838 1700 1159 805 Pst I PstI 923 SspI 2586 HpaI 849 1257
Upcoming SlideShare
Loading in …5
×

Biology - Genetic Engineering

2,677 views

Published on

Published in: Technology, Health & Medicine
  • Be the first to comment

Biology - Genetic Engineering

  1. 1. Genetic Engineering Biology - Edgar
  2. 2. Fig. 20-3-1 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1
  3. 3. Fig. 20-3-2 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2 One possible combination
  4. 4. Fig. 20-3-3 Restriction site DNA Sticky end Restriction enzyme cuts sugar-phosphate backbones. 5  3  3  5  1 One possible combination Recombinant DNA molecule DNA ligase seals strands. 3 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. 2
  5. 5. Fig. 20-9a Mixture of DNA mol- ecules of different sizes Power source Longer molecules Shorter molecules Gel Anode Cathode TECHNIQUE 1 2 Power source – + + –
  6. 9. Fig. 20-10 Normal allele Sickle-cell allele Large fragment (b) Electrophoresis of restriction fragments from normal and sickle-cell alleles 201 bp 175 bp 376 bp (a) Dde I restriction sites in normal and sickle-cell alleles of  -globin gene Normal  -globin allele Sickle-cell mutant  -globin allele Dde I Large fragment Large fragment 376 bp 201 bp 175 bp Dde I Dde I Dde I Dde I Dde I Dde I
  7. 11. Genetic Engineering & Cloning
  8. 12. Herbert Boyer and Stanley Cohen
  9. 16. Isolate DNA
  10. 17. Restriction Enzymes
  11. 19. Cut DNA
  12. 35. Recombinant DNA
  13. 42. Polymerase Chain Reaction
  14. 43. Polymerase Chain Reaction <ul><li>In Scientific American , Mullis summarized the accomplishment: &quot;Beginning with a single molecule of the genetic material DNA, the PCR can generate 100 billion similar molecules in an afternoon. The reaction is easy to execute. It requires no more than a test tube, a few simple reagents, and a source of heat.&quot; [9] </li></ul>http:// www.youtube.com/watch?v =xd4De47ldYs
  15. 48. PCR <ul><li>The PCR Song </li></ul><ul><li>The Concept. </li></ul>
  16. 49. GMO Lab
  17. 50. Step 1 <ul><li>Identify protein that can improve crop. </li></ul><ul><ul><li>Bt crops: produce delta-endotoxin which is lethal to corn borers. </li></ul></ul>
  18. 51. Step 2 <ul><li>Isolate gene – Clone </li></ul>
  19. 52. Step 3 <ul><li>Engineer gene so that crop will “read” it. </li></ul><ul><ul><li>Removing interons, and add promoter Cauliflower mosaic virus promoter </li></ul></ul><ul><ul><li>CaMV 35S </li></ul></ul>
  20. 53. Step 3 <ul><ul><li>Add terminator: NOS terminator from Agrobacterium tumefaciens </li></ul></ul>
  21. 54. Get the Gene into the Crop <ul><li>Agrobacterium tumefaciens Crown Gall Disease </li></ul>
  22. 55. Fig. 12-8a-1 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Recombinant Ti plasmid 1 Restriction site
  23. 56. Fig. 12-8a-2 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Recombinant Ti plasmid 1 Restriction site Plant cell Introduction into plant cells 2 DNA carrying new gene
  24. 57. Fig. 12-8a-3 Agrobacterium tumefaciens DNA containing gene for desired trait Ti plasmid Insertion of gene into plasmid Recombinant Ti plasmid 1 Restriction site Plant cell Introduction into plant cells 2 DNA carrying new gene Regeneration of plant 3 Plant with new trait
  25. 58. 2 Primers <ul><li>GMO Primers: Duplex PCR: </li></ul><ul><ul><li>CaMV 35S Promoter </li></ul></ul><ul><ul><li>NOS Terminator </li></ul></ul><ul><li>Plant Primers: Photosystem II Chloroplast Gene </li></ul>
  26. 59. Gel Electrophoresis <ul><li>1: non-GMO food with plant primers. </li></ul><ul><li>2: non-GMO food with GMO primers </li></ul><ul><li>3: Test food with plant primers </li></ul><ul><li>4: Test food with GMO primers. </li></ul><ul><li>5: GMO-positive template with plant primers. </li></ul><ul><li>6: GMO-positive template with GMO primers. </li></ul><ul><li>7: PCR molecular weight ruler. </li></ul>
  27. 60. The Questions <ul><li>Is Genetically Modified food safe to eat? </li></ul><ul><li>Just how radical is this new technology? </li></ul><ul><li>What are the benefits? </li></ul><ul><li>What are the risks? </li></ul><ul><li>Are GM foods sufficiently regulated in the US? </li></ul>
  28. 61. GMO <ul><li>PBS Harvest of Fear: GM Fish </li></ul>
  29. 62. 11,497 4700 2838 1700 1159 805 Pst I PstI 923 SspI 2586 HpaI 849 1257

×