Selection on Observables

MEASURE Evaluation
MEASURE EvaluationMEASURE Evaluation works to improve collection, analysis and presentation of data to promote better use of data in planning, policymaking, managing, monitoring and evaluating population, health and nutrition programs.
Peter M. Lance, PhD
MEASURE Evaluation
University of North Carolina at
Chapel Hill
September 13 and 15, 2016
Selection on Observables
Global, five-year, $180M cooperative agreement
Strategic objective:
To strengthen health information systems – the
capacity to gather, interpret, and use data – so
countries can make better decisions and sustain good
health outcomes over time.
Project overview
Improved country capacity to manage health
information systems, resources, and staff
Strengthened collection, analysis, and use of
routine health data
Methods, tools, and approaches improved and
applied to address health information challenges
and gaps
Increased capacity for rigorous evaluation
Phase IV Results Framework
Global footprint (more than 25 countries)
• The program impact evaluation challenge
• Randomization
• Selection on observables
• Within estimators
• Instrumental variables
• The program impact evaluation challenge
• Randomization
• Selection on observables
• Within estimators
• Instrumental variables
Selection on Observables
Selection on Observables
X
Y
P
X
Y
P
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
X
Y
P
X
Y
P
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1 𝑃 = 1 = 𝐸 𝑌1 𝑃 = 0
= 𝐸 𝑌1
X
Y
P
𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
X
Y
P
X
Y
P
𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0
𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
𝐸 𝑌0 𝑃 = 1 ≠ 𝐸 𝑌0 𝑃 = 0
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
𝑃 = 1 ≠ 𝐸 𝑌1
𝑃 = 0
𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌1
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌0
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌0
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1 ≠ 𝐸 𝑌1
𝑃 = 0
𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌1
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌0
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌0
𝑃 = 0, 𝑋 = 𝑥∗
X
Y
P
𝐸 𝑌1
𝑃 = 1 ≠ 𝐸 𝑌1
𝑃 = 0
𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌1
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌0
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌0
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1 ≠ 𝐸 𝑌1
𝑃 = 0
𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌1
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌0
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌0
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1 ≠ 𝐸 𝑌1
𝑃 = 0
𝑋 = 𝑥∗
𝐸 𝑌1
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌1
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌0
𝑃 = 1, 𝑋 = 𝑥∗
= 𝐸 𝑌0
𝑃 = 0, 𝑋 = 𝑥∗
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average Y
across sample
of participants
−
Average Y
across sample
of non−participants
𝐸 𝑌1
− 𝑌0
|𝑋 = 𝑥∗
= 𝐸 𝑌1
|𝑋 = 𝑥∗
− 𝐸 𝑌0
|𝑋 = 𝑥∗
Average Y
across sample
of participants
for whom
𝑋 = 𝑥∗
−
Average Y
across sample
of participants
of non−participants
𝑋 = 𝑥∗
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Population Participation Rate
Poor .4 .7
Middle .5 .3
Rich .1 .1
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Population Participation
Rate
Poor .4 .7
Middle .5 .3
Rich .1 .1
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Population Participation
Rate
Poor .4 .7
Middle .5 .3
Rich .1 .1
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏)
Non-
participants
(𝑷 = 𝟎)
Poor .64 .21
Middle .34 .63
Rich .02 .16
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏)
Non-
participants
(𝑷 = 𝟎)
Poor .64 .21
Middle .34 .63
Rich .02 .16
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏)
Non-
participants
(𝑷 = 𝟎)
Poor .64 .21
Middle .34 .63
Rich .02 .16
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏) Weight
Poor .64 .63
Middle .34 1.47
Rich .02 4.4
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏) Weight
Poor .64 .63
Middle .34 1.47
Rich .02 4.4
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏) Weight
Poor .64 .63
Middle .34 1.47
Rich .02 4.4
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏) Weight
Poor .64 .63
Middle .34 1.47
Rich .02 4.5
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝑤𝑖 ∗ 𝑌𝑖
𝑛 𝑃
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle class
𝒘𝒊=4.4 if individual i is rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝑌𝑖
𝑛 𝑃
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle class
𝒘𝒊=4.4 if individual i is rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝑤𝑖 ∙ 𝑌𝑖
𝑖=1
𝑛 𝑃
𝑤𝑖
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle class
𝒘𝒊=4.4 if individual i is rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝒘𝒊 ∙ 𝑌𝑖
𝑖=1
𝑛 𝑃
𝑤𝑖
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle class
𝒘𝒊=4.4 if individual i is rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1 − 𝐸 𝑌0
Participants
(𝑷 = 𝟏) Weight
Poor .64 .63
Middle .34 1.47
Rich .02 4.5
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝑤𝑖 ∙ 𝑌𝑖
𝑖=1
𝑛 𝑃
𝑤𝑖
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle
class
𝒘𝒊=4.5 if individual i is rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
. 4 ∗
Average Y
across sample
of participants
who are poor
+ .5 ∗
Average Y
across sample
of non−participants
who are middle class
+.1 ∗
Average Y
across sample
of participants
who are rich
𝐸 𝑌1
− 𝑌0
= 𝐸 𝑌1
− 𝐸 𝑌0
Average of Y
across a sample
of participants
=
𝑖=1
𝑛 𝑃
𝑤𝑖 ∙ 𝑌𝑖
𝑖=1
𝑛 𝑃
𝑤𝑖
𝒘𝒊=.63 if individual i is poor
𝒘𝒊=1.47 if individual i is middle
class
𝒘𝒊=4.5 if individual i is rich
Selection on Observables
𝑌0 = 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖
= 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖
= 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖
= 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖
= 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖
= 𝛽0 + 𝑃 ∙ 𝛽1 + 𝜖
𝑌 = 𝛽0 + 𝑃 ∙ 𝛽1 + 𝜖
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝑖 = 1, … , 𝑛
𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖
𝑚𝑖𝑛 𝛽0, 𝛽1
𝑖=1
𝑛
𝜀𝑖
2
= 𝑚𝑖𝑛 𝛽0, 𝛽1
𝑖=1
𝑛
𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖
2
𝜖𝑖
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖
𝑚𝑖𝑛 𝛽0, 𝛽1
𝑖=1
𝑛
𝜀𝑖
2
= 𝑚𝑖𝑛 𝛽0, 𝛽1
𝑖=1
𝑛
𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖
2
𝜖𝑖
𝛽1 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
where
𝑃 =
𝑖=1
𝑛
𝑃𝑖
𝑛
𝐸 𝛽1 = 𝛽1
An expected value for a random variable is the
average value from a large number of repetitions
of the experiment that random variable represents
An expected value is the true average of a random
variable across a population
Expected value
An expected value for a random variable is the
average value from a large number of repetitions
of the experiment that random variable represents
An expected value is the true average of a random
variable across a population
Expected value
An expected value is the true average of a random
variable across a population
𝐸 𝑋 = some true value
Expected value
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝐸 𝑐 = 𝑐
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍
𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍
Expectations: Properties
𝑬 𝒄 = 𝒄
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍
𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍
Expectations: Properties
𝐸 𝑐 = 𝑐
𝑬 𝒄 ∙ 𝑾 = 𝒄 ∙ 𝑬 𝑾
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍
𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍
Expectations: Properties
𝐸 𝑐 = 𝑐
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝑬 𝑾 + 𝒁 = 𝑬 𝑾 + 𝑬 𝒁
𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍
𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍
Expectations: Properties
𝐸 𝑐 = 𝑐
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝑬 𝑾 − 𝒁 = 𝑬 𝑾 − 𝑬 𝒁
𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍
Expectations: Properties
𝐸 𝑐 = 𝑐
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍
𝑬 𝒂 ∙ 𝑾 ± 𝒃 ∙ 𝒁 = 𝒂 ∙ 𝑬 𝑾 ± 𝒃 ∙ 𝑬 𝒁
Expectations: Properties
𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍
𝐸
𝑊
𝑍
≠
𝐸 𝑊
𝐸 𝑍
𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊
Expectations: Properties
𝑬 𝑾 ∙ 𝒁 ≠ 𝑬 𝑾 ∙ 𝑬 𝒁
𝐸
𝑊
𝑍
≠
𝐸 𝑊
𝐸 𝑍
𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊
Expectations: Properties
𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍
𝑬
𝑾
𝒁
≠
𝑬 𝑾
𝑬 𝒁
𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊
Expectations: Properties
𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍
𝐸
𝑊
𝑍
≠
𝐸 𝑊
𝐸 𝑍
𝑬 𝒇 𝑾 ≠ 𝒇 𝑬 𝑾
Expectations: Properties
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝛽1 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝛽1 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝛽1 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1 = 𝛽1
Selection on Observables
𝐸 𝛽1 = 𝛽1
Selection on Observables
𝛽1 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸( 𝛽1) = 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝐸( 𝛽1) = 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 + 𝑍 + 𝑄 = 𝐸 𝑊 + 𝐸 𝑍 + 𝐸 𝑄
𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍
𝐸 𝑊 + 𝑍 + 𝑄 = 𝐸 𝑊 + 𝐸 𝑍 + 𝐸 𝑄
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽0 ∙ 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽0 ∙ 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽0 ∗ 𝐸
0
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽0 ∗ 0
+𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∙ 𝐸
𝑖=1
𝑛
𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∙ 𝐸
𝑖=1
𝑛
𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑖=1
𝑛
𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 =
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∗ 𝐸
𝑖=1
𝑛
𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∙ 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∙ 𝐸 1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1 ∙ 1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+0
𝐸 𝛽1
= 𝛽1
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍
Expectations: Properties
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+
𝑖=1
𝑛
𝐸
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+
𝑖=1
𝑛
𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
∙ 𝐸 𝜖𝑖
𝐸 𝛽1
= 𝛽1
+
𝑖=1
𝑛
𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
∙ 0
𝐸 𝛽1
= 𝛽1
+0
𝐸 𝛽1
= 𝛽1
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
Peter M. Lance, PhD
MEASURE Evaluation
University of North Carolina at
Chapel Hill
September 13 and 15, 2016
Selection on Observables: Part
Deux
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝑌0
= 𝛽0 + 𝜖
𝑌1
= 𝛽0 + 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝜖𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝐸 𝛽1
= 𝛽1
𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
𝑌0 = 𝛽0 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝜀
𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝛽2 ∗ 𝑥 + 𝜀
− 𝛽0 + 𝛽2 ∗ 𝑥 + 𝜀
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽1
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
+ 1 − 𝑃 ∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Cost of participation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
Cost of participation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
Benefit-Cost>0
𝑌1
− 𝑌0
− C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
Benefit-Cost>0
𝑌1 − 𝑌0 − C > 0
𝛽1 − 𝐶 > 0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝑥 𝑃
X
Y
P
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
Benefit-Cost>0
𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
𝜀
P and 𝜺 are independent
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
𝐸( 𝜏1) = 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝑌𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝛽2 ∙ 𝑥𝑖 + 𝜀𝑖
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝛽0 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+ 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 0
+𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝐸
𝑖=1
𝑛
𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+𝐸
𝑖=1
𝑛
𝜀𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
+0
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝐸
𝑖=1
𝑛
𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
𝐸 𝜏1
= 𝛽1
+𝛽2 ∙ 𝛾1
𝑖=1
𝑛
𝑥
𝑖=1
𝑛
𝑥
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝐸
𝑖=1
𝑛
𝑥𝑖 ∙ 𝑃𝑖 − 𝑃
𝑖=1
𝑛
𝑃𝑖 − 𝑃 2
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The Actual
Causal Effect of
P on y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
The actual causal effect of
the omitted variable X on
Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
Th”Effect” of P on x:
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
The actual causal effect of
the omitted variable X on
Y
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
Error term now contains:
𝛽2 ∙ 𝑥
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
𝑬 𝝉 𝟏 ≠ 𝜷
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
Th”Effect” of P on x:
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
The actual causal effect of
the omitted variable X on
Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
The actual
causal effect of
P on y
Th”Effect” of P on x:
𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
The actual causal effect of
the omitted variable X on
Y
𝑌0
= 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
𝑌0
= 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
𝑌1 − 𝑌0
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1
− 𝑌0
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
− 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
= 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖
= 𝛽1
𝑌1 − 𝑌0
= 𝛽1
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖
= 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖
+𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
= 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
𝑌 = 𝑃 ∙ 𝑌1
+ 1 − 𝑃 ∙ 𝑌0
= 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
+ 1 − 𝑃
∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
Cost of participation
𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥1 + 𝜌2 ∙ 𝑥2 + 𝜌3 ∙ 𝑥3
True model:
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
We actually attempt to estimate:
𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
The actual
causal effect of
P on y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
The actual
causal effect of
P on y
Th”Effect” of P on x1:
𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖
The
actual
causal
effect of
the
omitted
variable
X1 on Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
The actual
causal effect of
P on y
”Effect” of P on x1:
𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖
The
actual
causal
effect of
the
omitted
variable
X1 on Y
The actual causal effect
of the omitted variable
X2 on Y
Th”Effect” of P on x2:
𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
The actual
causal effect of
P on y
”Effect” of P on x1:
𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖
The
actual
causal
effect of
the
omitted
variable
X1 on Y
The actual causal effect
of the omitted variable
X2 on Y
”Effect” of P on x2:
𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖
Th”Effect” of P on x1:
𝑥3𝑖= 𝛾30 + 𝛾31 ∙ 𝑃𝑖 + 𝜗3𝑖
The actual causal effect of
the omitted variable X3 on Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
The actual
causal effect of
P on y
”Effect” of P on x1:
𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖
The
actual
causal
effect of
the
omitted
variable
X1 on Y
The actual causal effect
of the omitted variable
X2 on Y
”Effect” of P on x2:
𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖
Th”Effect” of P on x3:
𝑥3𝑖= 𝛾30 + 𝛾31 ∙ 𝑃𝑖 + 𝜗3𝑖
The actual causal effect of
the omitted variable X3 on Y
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
Potential outcomes
𝑌0
= 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝜀
𝑌1
= 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝜀
Costs of participation
𝐶 = 𝜌0 + 𝜌2 ∙ 𝑥2 + 𝜌3 ∙ 𝑥3
X2
Y
P
X1
X3
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
X2
Y
P
X1
X3
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21
X2
Y
P
X1
X3
𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21
X2
Y
P
X1
X3
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
Selection on Observables
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
𝐸 𝛽1 = 𝛽1
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Regress 𝑌 on 𝑃 and 𝑥
𝐸 𝛽1 = 𝛽1
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Regress 𝑌 on 𝑃 and 𝑥
𝐸 𝛽1 = 𝛽1
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Regress 𝑌 on 𝑃 and 𝑥 and 𝑍
𝐸 𝛽1 ≠ 𝛽1
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
Regress 𝑌 on 𝑃 and 𝑥 and 𝑍
𝐸 𝛽1 ≠ 𝛽1
Bad controls
X2
Y
P
X1
X3
X2
Y
P
X1
X3
Z
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔
1.Is correlated with the regressor of
interest
2.Is correlated with the error term
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔
1.Is correlated with the regressor of
interest
2.Is correlated with the error term
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔
1.Is correlated with the regressor of
interest
2.Is correlated with the error term
𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔
1.Is correlated with the regressor of
interest
2.Is correlated with the error term
Matching
X
Y
P
1.
𝐸 𝑌1
|𝑋 = 𝑐 ≠ 𝐸 𝑌1
|𝑋 = 𝑘
𝐸 𝑌0
|𝑋 = 𝑐 ≠ 𝐸 𝑌0
|𝑋 = 𝑘
2.
𝑃𝑟 𝑃 = 1|𝑋 = 𝑐 ≠ 𝑃𝑟 𝑃 = 1|𝑋 = 𝑘
𝐸 𝑋|𝑃 = 1 ≠ 𝐸 𝑋|𝑃 = 0
𝑋 =
0 if male
1 if female
𝐸 𝑌1
|𝑋 𝐸 𝑌0
|𝑋 𝐸 𝑌1
|𝑋 − 𝐸 𝑌 0
|𝑋
𝑋 = 0 6 4 2
𝑋 = 1 5 1 4
𝐸 𝑌1
|𝑋 𝐸 𝑌0
|𝑋 𝐸 𝑌1
|𝑋 − 𝐸 𝑌 0
|𝑋
𝑋 = 0 6 4 2
𝑋 = 1 5 1 4
𝐸 𝑌1
− 𝑌0
|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑌1
− 𝑌0
|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= 2 ∙ .5 + 4 ∙ .5
= 3
𝐸 𝑌1
|𝑋 𝐸 𝑌0
|𝑋 𝐸 𝑌1
|𝑋 − 𝐸 𝑌 0
|𝑋
𝑋 = 0 6 4 2
𝑋 = 1 5 1 4
𝐸 𝑌1
|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑌1
|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= 6 ∙ .5 + 5 ∙ .5
= 5.5
𝐸 𝑌1
|𝑋 𝐸 𝑌0
|𝑋 𝐸 𝑌1
|𝑋 − 𝐸 𝑌 0
|𝑋
𝑋 = 0 6 4 2
𝑋 = 1 5 1 4
𝐸 𝑌0
|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑌0
|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= 4 ∙ .5 + 1 ∙ .5
= 2.5
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
𝑛 = 1000
𝑖=1
𝑛
𝑋𝑖
𝑛
=
𝑖=1
1000
𝑋𝑖
1000
≈ 500
𝑖=1
𝑛
𝑃𝑖
𝑛
=
𝑖=1
1000
𝑃𝑖
1000
≈ 300
𝑛 = 1000
𝑖=1
𝑛
𝑋𝑖
𝑛
=
𝑖=1
1000
𝑋𝑖
1000
≈ .5
𝑖=1
𝑛
𝑃𝑖
𝑛
=
𝑖=1
1000
𝑃𝑖
1000
≈ 300
𝑛 = 1000
𝑖=1
𝑛
𝑋𝑖
𝑛
=
𝑖=1
1000
𝑋𝑖
1000
≈ .5
𝑖=1
𝑛
𝑃𝑖
𝑛
=
𝑖=1
1000
𝑃𝑖
1000
≈ .3
𝑗=1
300
𝑌𝑗
300
: 6 ∙ .16667 + 5 ∙ .8333 = 5.16652
𝑗=1
300
𝑌𝑗
300
: 6 ∙ .16667 + 5 ∙ .8333 = 5.16652
𝑗=1
700
𝑌𝑗
700
: 4 ∙ .6428 + 1 ∙ .3571 = 2.9286
?
𝑖 = 237
𝑋237 = 0
𝑃237 = 1
𝑌237 = 𝑌237
1
= 5.3
𝑖 = 237
𝑋237 = 0
𝑃237 = 1
𝑌237 = 𝑌237
1
= 5.3
𝑖 = 237
𝑋237 = 0
𝑃237 = 1
𝑌237 = 𝑌237
1
= 5.3
𝑖 = 237
𝑋237 = 0
𝑃237 = 1
𝑌237 = 𝑌237
1
= 5.3
𝑖 = 237
𝑋237 = 0
𝑃237 = 1
𝑌237 = 𝑌237
1
= 6.3
𝐼237 = 𝑌237
1
− 𝑌237
0
= 6.3−?
𝑌237
0
𝑌237
0
= 𝑌766
0
𝑌237
0
=
𝑌48
0
+ 𝑌109
0
+ 𝑌418
0
+ 𝑌505
0
+ 𝑌919
0
5
𝐼𝑖 = 𝑌𝑖
1
− 𝑌𝑖
0
𝐴𝑇𝐸 =
𝑖=1
𝑛
𝐼𝑖
𝑛
𝑘=0
𝐾
𝐸 𝐼|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
=
𝑘=0
𝐾
𝐸 𝑌1
− 𝑌0
|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
𝑘=0
𝐾
𝐸 𝐼|𝑋 = 𝑘, 𝑃 = 1 ∙ 𝑃𝑟 𝑋 = 𝑘|𝑃 = 1
=
𝑘=0
𝐾
𝐸 𝑌1
− 𝑌0
|𝑋 = 𝑘, 𝑃 = 1 ∙ 𝑃𝑟 𝑋 = 𝑘|𝑃 = 1
𝐼237 = 𝑌237
1
− 𝑌237
0
= 6.3−?
𝑘=0
𝐾
𝐸 𝐼|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
=
𝑘=0
𝐾
𝐸 𝑌1
− 𝑌0
|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
X
Y
P
Selection on Observables
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
5,760 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
2 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
10 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
40 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
80 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
480 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
2,880 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
5,760 potential “types”
2X Gender-male/female
5X SES-5 quintiles
4X Age-broken up into 4 categories
2X Sector-Urban/Rural
6X Religion-Christian, Muslim,
Hindu, Buddhist, Jewish,
Traditional.
6X Occupation-6 occupation types
2 Insurance-Insured/not insured
____
5,760 potential “types”
Pr(𝑃 = 1|𝑋)
𝐼237 = 𝑌237
1
− 𝑌237
0
= 6.3−?
𝐼237 = 𝑌237
1
− 𝑌237
0
= 6.3−?
Pr(𝑃 = 1|𝑋)
𝑃𝑟(𝑃 = 1|𝑋)
𝑃𝑟 𝑃 = 1 𝑋 =
𝑒𝑥𝑝 𝛽0 + 𝛽1 ∙ 𝑋
1 + 𝑒𝑥𝑝 𝛽0 + 𝛽1 ∙ 𝑋
The basics of the method
1. Pool your sample of participants and non-participants
and define various characteristics 𝑋.
2. Estimate the probability of program participation
conditional on
Pr 𝑃 = 1|𝑋
3. Compute the propensity score using the fitted binary
participation model.
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
4. Find a counterfactual outcome for each individual by
identifying some individual who did experience the
counterfactual conditions and had a similar propensity score
Matching approaches
1. Nearest neighbor
2. Caliper
3. (Budget) Caliper
4. Weighting
Matching approaches
1. Nearest neighbor
2. Caliper
3. (Budget) Caliper
4. Weighting
Balancing property
Pr 𝑃 = 1|𝑋
Propensity score
0
1
P=0 P=1
Common
support
Propensity score
0
1
P=0 P=1
Failure of
common
support
Other applications of the
propensity score
1.Weighting
2.Regression
Other applications of the
propensity score
1.Weighting
2.Regression
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants 700 non-participants
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants 700 non-participants
50 men 250 women
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants 700 non-participants
50 men 250 women 450 men 250 women
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants 700 non-participants
500 men 500 women 450 men 250 women
𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋
𝑋 = 0 .1 .9
𝑋 = 1 .5 .5
𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0
+𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1
= .1 ∙ .5 + .5 ∙ .5
= .3
1,000 observations
300 participants 700 non-participants
500 men 500 women 500 men 500 women
𝑊𝑌𝑖 =
𝑃𝑖 ∙ 𝑌𝑖
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
−
1 − 𝑃𝑖 ∙ 𝑌𝑖
1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
𝐴𝑇𝐸 =
𝑖=1
𝑛
𝑊𝑌𝑖
𝑖=1
𝑛 𝑃𝑖
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
+
1 − 𝑃𝑖
1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
𝑊𝑌𝑖 =
𝑃𝑖 ∙ 𝑌𝑖
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
−
1 − 𝑃𝑖 ∙ 𝑌𝑖
1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
𝐴𝑇𝐸 =
𝑖=1
𝑛
𝑊𝑌𝑖
𝒊=𝟏
𝒏 𝑷𝒊
𝑷𝒓 𝑷𝒊 = 𝟏|𝑿𝒊
+
𝟏 − 𝑷𝒊
𝟏 − 𝑷𝒓 𝑷𝒊 = 𝟏|𝑿𝒊
𝑊𝑌𝑖 =
𝑃𝑖 ∙ 𝑌𝑖
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
−
1 − 𝑃𝑖 ∙ 𝑌𝑖
1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
𝐴𝑇𝐸 =
𝑖=1
𝑛
𝑊𝑌𝑖
𝑖=1
𝑛 𝑃𝑖
𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
+
1 − 𝑃𝑖
1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
Other applications of the
propensity score
1.Weighting
2.Regression
Regress 𝑌𝑖 on 𝑃𝑖 and 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
Regress 𝑌𝑖 on 𝑃𝑖 and 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
Conclusion
Links:
The manual:
http://www.measureevaluation.org/resources/publications/ms-
14-87-en
The webinar introducing the manual:
http://www.measureevaluation.org/resources/webinars/metho
ds-for-program-impact-evaluation
My email:
pmlance@email.unc.edu
MEASURE Evaluation is funded by the U.S. Agency
for International Development (USAID) under terms
of Cooperative Agreement AID-OAA-L-14-00004 and
implemented by the Carolina Population Center, University
of North Carolina at Chapel Hill in partnership with ICF
International, John Snow, Inc., Management Sciences for
Health, Palladium Group, and Tulane University. The views
expressed in this presentation do not necessarily reflect
the views of USAID or the United States government.
www.measureevaluation.org
1 of 326

Recommended

Fundamentals of Program Impact Evaluation by
Fundamentals of Program Impact EvaluationFundamentals of Program Impact Evaluation
Fundamentals of Program Impact EvaluationMEASURE Evaluation
3.4K views166 slides
Instrumental Variables by
Instrumental VariablesInstrumental Variables
Instrumental VariablesMEASURE Evaluation
1.7K views226 slides
Within Models by
Within ModelsWithin Models
Within ModelsMEASURE Evaluation
859 views197 slides
Probability and Statistics by
Probability and StatisticsProbability and Statistics
Probability and StatisticsRoozbeh Sanaei
334 views58 slides
Causality in Python PyCon 2021 ISRAEL by
Causality in Python PyCon 2021 ISRAELCausality in Python PyCon 2021 ISRAEL
Causality in Python PyCon 2021 ISRAELHanan Shteingart
99 views37 slides
Fragility Index by
Fragility IndexFragility Index
Fragility IndexSMACC Conference
198 views57 slides

More Related Content

Viewers also liked

Daftar isi by
Daftar isiDaftar isi
Daftar isineni teh
6.7K views9 slides
Bagian 3 by
Bagian 3Bagian 3
Bagian 3neni teh
6.3K views1 slide
Bagian 2 by
Bagian 2Bagian 2
Bagian 2neni teh
6.5K views5 slides
Bagian 4 by
Bagian 4Bagian 4
Bagian 4neni teh
7.3K views26 slides
Bagian 5 by
Bagian 5Bagian 5
Bagian 5neni teh
6.7K views10 slides
Daftar pustaka by
Daftar pustakaDaftar pustaka
Daftar pustakaneni teh
7.7K views4 slides

Viewers also liked(20)

Daftar isi by neni teh
Daftar isiDaftar isi
Daftar isi
neni teh6.7K views
Bagian 3 by neni teh
Bagian 3Bagian 3
Bagian 3
neni teh6.3K views
Bagian 2 by neni teh
Bagian 2Bagian 2
Bagian 2
neni teh6.5K views
Bagian 4 by neni teh
Bagian 4Bagian 4
Bagian 4
neni teh7.3K views
Bagian 5 by neni teh
Bagian 5Bagian 5
Bagian 5
neni teh6.7K views
Daftar pustaka by neni teh
Daftar pustakaDaftar pustaka
Daftar pustaka
neni teh7.7K views
Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int... by MEASURE Evaluation
Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int...Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int...
Addressing Complexity in the Impact Evaluation of the Cross-Border Health Int...
MEASURE Evaluation642 views
Measuring Ethnic and Sexual Identities: Lessons from Two Studies in Central A... by MEASURE Evaluation
Measuring Ethnic and Sexual Identities: Lessons from Two Studies in Central A...Measuring Ethnic and Sexual Identities: Lessons from Two Studies in Central A...
Measuring Ethnic and Sexual Identities: Lessons from Two Studies in Central A...
MEASURE Evaluation1.6K views
Using the PLACE Method to Inform Decision Making by MEASURE Evaluation
Using the PLACE Method to Inform Decision MakingUsing the PLACE Method to Inform Decision Making
Using the PLACE Method to Inform Decision Making
MEASURE Evaluation1.7K views
Interoperability & Crowdsourcing: Can these improve the management of ANC pro... by MEASURE Evaluation
Interoperability & Crowdsourcing: Can these improve the management of ANC pro...Interoperability & Crowdsourcing: Can these improve the management of ANC pro...
Interoperability & Crowdsourcing: Can these improve the management of ANC pro...
MEASURE Evaluation1.4K views
The Prevalence, Experience and Management of Pain by MEASURE Evaluation
The Prevalence, Experience and Management of PainThe Prevalence, Experience and Management of Pain
The Prevalence, Experience and Management of Pain
MEASURE Evaluation1.4K views
Including AIDS-affected young people in OVC research: Challenges and opportu... by MEASURE Evaluation
Including AIDS-affected young people in OVC research:  Challenges and opportu...Including AIDS-affected young people in OVC research:  Challenges and opportu...
Including AIDS-affected young people in OVC research: Challenges and opportu...
MEASURE Evaluation925 views
Monitoring Scale-up of Health Practices and Interventions by MEASURE Evaluation
Monitoring Scale-up of Health Practices and InterventionsMonitoring Scale-up of Health Practices and Interventions
Monitoring Scale-up of Health Practices and Interventions
MEASURE Evaluation1.6K views
Measuring Success in Repositioning Family Planning by MEASURE Evaluation
Measuring Success in Repositioning Family PlanningMeasuring Success in Repositioning Family Planning
Measuring Success in Repositioning Family Planning
MEASURE Evaluation1.3K views
RHINO Forum: How can RHIS improve the delivery of HIV/AIDS services? by MEASURE Evaluation
RHINO Forum: How can RHIS improve the delivery of HIV/AIDS services?RHINO Forum: How can RHIS improve the delivery of HIV/AIDS services?
RHINO Forum: How can RHIS improve the delivery of HIV/AIDS services?
MEASURE Evaluation990 views
Assessing HIV Service: Use and Information Systems for Key Populations in Nam... by MEASURE Evaluation
Assessing HIV Service: Use and Information Systems for Key Populations in Nam...Assessing HIV Service: Use and Information Systems for Key Populations in Nam...
Assessing HIV Service: Use and Information Systems for Key Populations in Nam...
MEASURE Evaluation643 views
Integration as a Health Systems Strengthening Intervention: Case Studies from... by MEASURE Evaluation
Integration as a Health Systems Strengthening Intervention: Case Studies from...Integration as a Health Systems Strengthening Intervention: Case Studies from...
Integration as a Health Systems Strengthening Intervention: Case Studies from...
MEASURE Evaluation1.5K views

Similar to Selection on Observables

SUEC 高中 Adv Maths (Irrational Part 3) by
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)tungwc
63 views24 slides
SUEC 高中 Adv Maths (2 Roots Part 2) by
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)tungwc
36 views19 slides
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec... by
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...tungwc
78 views10 slides
SUEC 高中 Adv Maths (2 Roots Part 1) by
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)tungwc
65 views9 slides
SUEC 高中 Adv Maths (Quadratic Equation in One Variable) by
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)tungwc
39 views21 slides
Cheatsheet - Fórmulas de Física para Física General y Física de Ingenieros by
Cheatsheet - Fórmulas de Física para Física General y Física de IngenierosCheatsheet - Fórmulas de Física para Física General y Física de Ingenieros
Cheatsheet - Fórmulas de Física para Física General y Física de IngenierosJose Perez
2.2K views3 slides

Similar to Selection on Observables(20)

SUEC 高中 Adv Maths (Irrational Part 3) by tungwc
SUEC 高中 Adv Maths (Irrational Part 3)SUEC 高中 Adv Maths (Irrational Part 3)
SUEC 高中 Adv Maths (Irrational Part 3)
tungwc63 views
SUEC 高中 Adv Maths (2 Roots Part 2) by tungwc
SUEC 高中 Adv Maths (2 Roots Part 2)SUEC 高中 Adv Maths (2 Roots Part 2)
SUEC 高中 Adv Maths (2 Roots Part 2)
tungwc36 views
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec... by tungwc
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
SUEC 高中 Adv Maths (Biquadratic Equation, Method of Changing the Variable, Rec...
tungwc78 views
SUEC 高中 Adv Maths (2 Roots Part 1) by tungwc
SUEC 高中 Adv Maths (2 Roots Part 1)SUEC 高中 Adv Maths (2 Roots Part 1)
SUEC 高中 Adv Maths (2 Roots Part 1)
tungwc65 views
SUEC 高中 Adv Maths (Quadratic Equation in One Variable) by tungwc
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
SUEC 高中 Adv Maths (Quadratic Equation in One Variable)
tungwc39 views
Cheatsheet - Fórmulas de Física para Física General y Física de Ingenieros by Jose Perez
Cheatsheet - Fórmulas de Física para Física General y Física de IngenierosCheatsheet - Fórmulas de Física para Física General y Física de Ingenieros
Cheatsheet - Fórmulas de Física para Física General y Física de Ingenieros
Jose Perez2.2K views
SUEC 高中 Adv Maths (Irrational Part 2) by tungwc
SUEC 高中 Adv Maths (Irrational Part 2)SUEC 高中 Adv Maths (Irrational Part 2)
SUEC 高中 Adv Maths (Irrational Part 2)
tungwc55 views
Ecuacion diferencial de la forma u=ax+bx+c by Eduardo Pila
Ecuacion diferencial de la forma u=ax+bx+cEcuacion diferencial de la forma u=ax+bx+c
Ecuacion diferencial de la forma u=ax+bx+c
Eduardo Pila283 views
Math-7-Lesson-9-Irrational-Numbers.pdf by VelodonaTancio
Math-7-Lesson-9-Irrational-Numbers.pdfMath-7-Lesson-9-Irrational-Numbers.pdf
Math-7-Lesson-9-Irrational-Numbers.pdf
VelodonaTancio3 views

More from MEASURE Evaluation

Managing missing values in routinely reported data: One approach from the Dem... by
Managing missing values in routinely reported data: One approach from the Dem...Managing missing values in routinely reported data: One approach from the Dem...
Managing missing values in routinely reported data: One approach from the Dem...MEASURE Evaluation
1.6K views52 slides
Use of Routine Data for Economic Evaluations by
Use of Routine Data for Economic EvaluationsUse of Routine Data for Economic Evaluations
Use of Routine Data for Economic EvaluationsMEASURE Evaluation
1.1K views26 slides
Routine data use in evaluation: practical guidance by
Routine data use in evaluation: practical guidanceRoutine data use in evaluation: practical guidance
Routine data use in evaluation: practical guidanceMEASURE Evaluation
2.3K views40 slides
Tuberculosis/HIV Mobility Study: Objectives and Background by
Tuberculosis/HIV Mobility Study: Objectives and BackgroundTuberculosis/HIV Mobility Study: Objectives and Background
Tuberculosis/HIV Mobility Study: Objectives and BackgroundMEASURE Evaluation
779 views78 slides
How to improve the capabilities of health information systems to address emer... by
How to improve the capabilities of health information systems to address emer...How to improve the capabilities of health information systems to address emer...
How to improve the capabilities of health information systems to address emer...MEASURE Evaluation
906 views19 slides
LCI Evaluation Uganda Organizational Network Analysis by
LCI Evaluation Uganda Organizational Network AnalysisLCI Evaluation Uganda Organizational Network Analysis
LCI Evaluation Uganda Organizational Network AnalysisMEASURE Evaluation
625 views24 slides

More from MEASURE Evaluation(20)

Managing missing values in routinely reported data: One approach from the Dem... by MEASURE Evaluation
Managing missing values in routinely reported data: One approach from the Dem...Managing missing values in routinely reported data: One approach from the Dem...
Managing missing values in routinely reported data: One approach from the Dem...
MEASURE Evaluation1.6K views
Use of Routine Data for Economic Evaluations by MEASURE Evaluation
Use of Routine Data for Economic EvaluationsUse of Routine Data for Economic Evaluations
Use of Routine Data for Economic Evaluations
MEASURE Evaluation1.1K views
Routine data use in evaluation: practical guidance by MEASURE Evaluation
Routine data use in evaluation: practical guidanceRoutine data use in evaluation: practical guidance
Routine data use in evaluation: practical guidance
MEASURE Evaluation2.3K views
Tuberculosis/HIV Mobility Study: Objectives and Background by MEASURE Evaluation
Tuberculosis/HIV Mobility Study: Objectives and BackgroundTuberculosis/HIV Mobility Study: Objectives and Background
Tuberculosis/HIV Mobility Study: Objectives and Background
MEASURE Evaluation779 views
How to improve the capabilities of health information systems to address emer... by MEASURE Evaluation
How to improve the capabilities of health information systems to address emer...How to improve the capabilities of health information systems to address emer...
How to improve the capabilities of health information systems to address emer...
MEASURE Evaluation906 views
LCI Evaluation Uganda Organizational Network Analysis by MEASURE Evaluation
LCI Evaluation Uganda Organizational Network AnalysisLCI Evaluation Uganda Organizational Network Analysis
LCI Evaluation Uganda Organizational Network Analysis
MEASURE Evaluation625 views
Using Organizational Network Analysis to Plan and Evaluate Global Health Prog... by MEASURE Evaluation
Using Organizational Network Analysis to Plan and Evaluate Global Health Prog...Using Organizational Network Analysis to Plan and Evaluate Global Health Prog...
Using Organizational Network Analysis to Plan and Evaluate Global Health Prog...
MEASURE Evaluation633 views
Understanding Referral Networks for Adolescent Girls and Young Women by MEASURE Evaluation
Understanding Referral Networks for Adolescent Girls and Young WomenUnderstanding Referral Networks for Adolescent Girls and Young Women
Understanding Referral Networks for Adolescent Girls and Young Women
MEASURE Evaluation610 views
Data for Impact: Lessons Learned in Using the Ripple Effects Mapping Method by MEASURE Evaluation
Data for Impact: Lessons Learned in Using the Ripple Effects Mapping MethodData for Impact: Lessons Learned in Using the Ripple Effects Mapping Method
Data for Impact: Lessons Learned in Using the Ripple Effects Mapping Method
MEASURE Evaluation1.1K views
Development and Validation of a Reproductive Empowerment Scale by MEASURE Evaluation
Development and Validation of a Reproductive Empowerment ScaleDevelopment and Validation of a Reproductive Empowerment Scale
Development and Validation of a Reproductive Empowerment Scale
MEASURE Evaluation409 views
Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ... by MEASURE Evaluation
Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ...Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ...
Sustaining the Impact: MEASURE Evaluation Conversation on Maternal and Child ...
MEASURE Evaluation344 views
Using Most Significant Change in a Mixed-Methods Evaluation in Uganda by MEASURE Evaluation
Using Most Significant Change in a Mixed-Methods Evaluation in UgandaUsing Most Significant Change in a Mixed-Methods Evaluation in Uganda
Using Most Significant Change in a Mixed-Methods Evaluation in Uganda
MEASURE Evaluation491 views
Lessons Learned In Using the Most Significant Change Technique in Evaluation by MEASURE Evaluation
Lessons Learned In Using the Most Significant Change Technique in EvaluationLessons Learned In Using the Most Significant Change Technique in Evaluation
Lessons Learned In Using the Most Significant Change Technique in Evaluation
MEASURE Evaluation795 views
Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:... by MEASURE Evaluation
Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:...Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:...
Malaria Data Quality and Use in Selected Centers of Excellence in Madagascar:...
MEASURE Evaluation269 views
Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio... by MEASURE Evaluation
Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio...Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio...
Evaluating National Malaria Programs’ Impact in Moderate- and Low-Transmissio...
MEASURE Evaluation166 views
Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ... by MEASURE Evaluation
Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ...Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ...
Improved Performance of the Malaria Surveillance, Monitoring, and Evaluation ...
MEASURE Evaluation209 views
Lessons learned in using process tracing for evaluation by MEASURE Evaluation
Lessons learned in using process tracing for evaluationLessons learned in using process tracing for evaluation
Lessons learned in using process tracing for evaluation
MEASURE Evaluation1.7K views
Use of Qualitative Comparative Analysis in the Assessment of the Actionable D... by MEASURE Evaluation
Use of Qualitative Comparative Analysis in the Assessment of the Actionable D...Use of Qualitative Comparative Analysis in the Assessment of the Actionable D...
Use of Qualitative Comparative Analysis in the Assessment of the Actionable D...
MEASURE Evaluation660 views
Sustaining the Impact: MEASURE Evaluation Conversation on Health Informatics by MEASURE Evaluation
Sustaining the Impact: MEASURE Evaluation Conversation on Health InformaticsSustaining the Impact: MEASURE Evaluation Conversation on Health Informatics
Sustaining the Impact: MEASURE Evaluation Conversation on Health Informatics
MEASURE Evaluation504 views

Recently uploaded

MercerJesse3.0.pdf by
MercerJesse3.0.pdfMercerJesse3.0.pdf
MercerJesse3.0.pdfjessemercerail
92 views6 slides
The Future of Micro-credentials: Is Small Really Beautiful? by
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?Mark Brown
48 views35 slides
Java Simplified: Understanding Programming Basics by
Java Simplified: Understanding Programming BasicsJava Simplified: Understanding Programming Basics
Java Simplified: Understanding Programming BasicsAkshaj Vadakkath Joshy
625 views155 slides
Berry country.pdf by
Berry country.pdfBerry country.pdf
Berry country.pdfMariaKenney3
61 views12 slides
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023 by
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023A Guide to Applying for the Wells Mountain Initiative Scholarship 2023
A Guide to Applying for the Wells Mountain Initiative Scholarship 2023Excellence Foundation for South Sudan
79 views26 slides
Nelson_RecordStore.pdf by
Nelson_RecordStore.pdfNelson_RecordStore.pdf
Nelson_RecordStore.pdfBrynNelson5
46 views10 slides

Recently uploaded(20)

The Future of Micro-credentials: Is Small Really Beautiful? by Mark Brown
The Future of Micro-credentials:  Is Small Really Beautiful?The Future of Micro-credentials:  Is Small Really Beautiful?
The Future of Micro-credentials: Is Small Really Beautiful?
Mark Brown48 views
Nelson_RecordStore.pdf by BrynNelson5
Nelson_RecordStore.pdfNelson_RecordStore.pdf
Nelson_RecordStore.pdf
BrynNelson546 views
Parts of Speech (1).pptx by mhkpreet001
Parts of Speech (1).pptxParts of Speech (1).pptx
Parts of Speech (1).pptx
mhkpreet00143 views
Monthly Information Session for MV Asterix (November) by Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC98 views
ANGULARJS.pdf by ArthyR3
ANGULARJS.pdfANGULARJS.pdf
ANGULARJS.pdf
ArthyR349 views
Six Sigma Concept by Sahil Srivastava.pptx by Sahil Srivastava
Six Sigma Concept by Sahil Srivastava.pptxSix Sigma Concept by Sahil Srivastava.pptx
Six Sigma Concept by Sahil Srivastava.pptx
Sahil Srivastava40 views
Guess Papers ADC 1, Karachi University by Khalid Aziz
Guess Papers ADC 1, Karachi UniversityGuess Papers ADC 1, Karachi University
Guess Papers ADC 1, Karachi University
Khalid Aziz83 views
12.5.23 Poverty and Precarity.pptx by mary850239
12.5.23 Poverty and Precarity.pptx12.5.23 Poverty and Precarity.pptx
12.5.23 Poverty and Precarity.pptx
mary850239162 views
Education of marginalized and socially disadvantages segments.pptx by GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati540 views
Pharmaceutical Analysis PPT (BP 102T) by yakshpharmacy009
Pharmaceutical Analysis PPT (BP 102T) Pharmaceutical Analysis PPT (BP 102T)
Pharmaceutical Analysis PPT (BP 102T)
yakshpharmacy009101 views
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 by MysoreMuleSoftMeetup
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Career Building in AI - Technologies, Trends and Opportunities by WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy41 views

Selection on Observables

  • 1. Peter M. Lance, PhD MEASURE Evaluation University of North Carolina at Chapel Hill September 13 and 15, 2016 Selection on Observables
  • 2. Global, five-year, $180M cooperative agreement Strategic objective: To strengthen health information systems – the capacity to gather, interpret, and use data – so countries can make better decisions and sustain good health outcomes over time. Project overview
  • 3. Improved country capacity to manage health information systems, resources, and staff Strengthened collection, analysis, and use of routine health data Methods, tools, and approaches improved and applied to address health information challenges and gaps Increased capacity for rigorous evaluation Phase IV Results Framework
  • 4. Global footprint (more than 25 countries)
  • 5. • The program impact evaluation challenge • Randomization • Selection on observables • Within estimators • Instrumental variables
  • 6. • The program impact evaluation challenge • Randomization • Selection on observables • Within estimators • Instrumental variables
  • 10. X Y P 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0
  • 11. X Y P
  • 12. X Y P
  • 13. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 14. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 15. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 16. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 17. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 18. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 19. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 20. 𝐸 𝑌1 𝑃 = 1 = 𝐸 𝑌1 𝑃 = 0 = 𝐸 𝑌1
  • 21. X Y P
  • 22. 𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
  • 23. X Y P
  • 24. X Y P
  • 25. 𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0
  • 26. 𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0
  • 27. 𝐸 𝑋 𝑃 = 1 ≠ 𝐸 𝑋 𝑃 = 0 𝐸 𝑌0 𝑃 = 1 ≠ 𝐸 𝑌0 𝑃 = 0
  • 28. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 29. 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0 𝑋 = 𝑥∗ 𝐸 𝑌1 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌1 𝑃 = 0, 𝑋 = 𝑥∗ 𝐸 𝑌0 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌0 𝑃 = 0, 𝑋 = 𝑥∗
  • 30. 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0 𝑋 = 𝑥∗ 𝐸 𝑌1 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌1 𝑃 = 0, 𝑋 = 𝑥∗ 𝐸 𝑌0 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌0 𝑃 = 0, 𝑋 = 𝑥∗
  • 31. X Y P
  • 32. 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0 𝑋 = 𝑥∗ 𝐸 𝑌1 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌1 𝑃 = 0, 𝑋 = 𝑥∗ 𝐸 𝑌0 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌0 𝑃 = 0, 𝑋 = 𝑥∗
  • 33. 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0 𝑋 = 𝑥∗ 𝐸 𝑌1 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌1 𝑃 = 0, 𝑋 = 𝑥∗ 𝐸 𝑌0 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌0 𝑃 = 0, 𝑋 = 𝑥∗
  • 34. 𝐸 𝑌1 𝑃 = 1 ≠ 𝐸 𝑌1 𝑃 = 0 𝑋 = 𝑥∗ 𝐸 𝑌1 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌1 𝑃 = 0, 𝑋 = 𝑥∗ 𝐸 𝑌0 𝑃 = 1, 𝑋 = 𝑥∗ = 𝐸 𝑌0 𝑃 = 0, 𝑋 = 𝑥∗
  • 35. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average Y across sample of participants − Average Y across sample of non−participants
  • 36. 𝐸 𝑌1 − 𝑌0 |𝑋 = 𝑥∗ = 𝐸 𝑌1 |𝑋 = 𝑥∗ − 𝐸 𝑌0 |𝑋 = 𝑥∗ Average Y across sample of participants for whom 𝑋 = 𝑥∗ − Average Y across sample of participants of non−participants 𝑋 = 𝑥∗
  • 37. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Population Participation Rate Poor .4 .7 Middle .5 .3 Rich .1 .1
  • 38. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Population Participation Rate Poor .4 .7 Middle .5 .3 Rich .1 .1
  • 39. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Population Participation Rate Poor .4 .7 Middle .5 .3 Rich .1 .1
  • 40. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Non- participants (𝑷 = 𝟎) Poor .64 .21 Middle .34 .63 Rich .02 .16
  • 41. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Non- participants (𝑷 = 𝟎) Poor .64 .21 Middle .34 .63 Rich .02 .16
  • 42. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Non- participants (𝑷 = 𝟎) Poor .64 .21 Middle .34 .63 Rich .02 .16
  • 43. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Weight Poor .64 .63 Middle .34 1.47 Rich .02 4.4
  • 44. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Weight Poor .64 .63 Middle .34 1.47 Rich .02 4.4
  • 45. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Weight Poor .64 .63 Middle .34 1.47 Rich .02 4.4
  • 46. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Weight Poor .64 .63 Middle .34 1.47 Rich .02 4.5
  • 47. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝑤𝑖 ∗ 𝑌𝑖 𝑛 𝑃 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.4 if individual i is rich
  • 48. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝑌𝑖 𝑛 𝑃 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.4 if individual i is rich
  • 49. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝑤𝑖 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃 𝑤𝑖 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.4 if individual i is rich
  • 50. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝒘𝒊 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃 𝑤𝑖 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.4 if individual i is rich
  • 51. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Participants (𝑷 = 𝟏) Weight Poor .64 .63 Middle .34 1.47 Rich .02 4.5
  • 52. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝑤𝑖 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃 𝑤𝑖 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.5 if individual i is rich
  • 53. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 . 4 ∗ Average Y across sample of participants who are poor + .5 ∗ Average Y across sample of non−participants who are middle class +.1 ∗ Average Y across sample of participants who are rich
  • 54. 𝐸 𝑌1 − 𝑌0 = 𝐸 𝑌1 − 𝐸 𝑌0 Average of Y across a sample of participants = 𝑖=1 𝑛 𝑃 𝑤𝑖 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃 𝑤𝑖 𝒘𝒊=.63 if individual i is poor 𝒘𝒊=1.47 if individual i is middle class 𝒘𝒊=4.5 if individual i is rich
  • 56. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖
  • 57. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 58. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 59. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 60. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 61. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 62. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 63. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖 = 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 64. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖 = 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 65. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖 = 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 66. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∙ 𝛽0 + 𝜖 = 𝑃 ∙ 𝛽0 + 𝑃 ∙ 𝛽1 + 𝑃 ∙ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∙ 𝛽0 − 𝑃 ∙ 𝜖 = 𝛽0 + 𝑃 ∙ 𝛽1 + 𝜖
  • 67. 𝑌 = 𝛽0 + 𝑃 ∙ 𝛽1 + 𝜖
  • 68. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 69. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0
  • 70. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0
  • 71. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0
  • 72. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 73. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0
  • 74. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 75. 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖 𝑖 = 1, … , 𝑛
  • 76. 𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖 𝑚𝑖𝑛 𝛽0, 𝛽1 𝑖=1 𝑛 𝜀𝑖 2 = 𝑚𝑖𝑛 𝛽0, 𝛽1 𝑖=1 𝑛 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖 2 𝜖𝑖
  • 77. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 78. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 79. 𝜖𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖 𝑚𝑖𝑛 𝛽0, 𝛽1 𝑖=1 𝑛 𝜀𝑖 2 = 𝑚𝑖𝑛 𝛽0, 𝛽1 𝑖=1 𝑛 𝑌𝑖 − 𝛽0 − 𝛽1 ∙ 𝑃𝑖 2 𝜖𝑖
  • 80. 𝛽1 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 where 𝑃 = 𝑖=1 𝑛 𝑃𝑖 𝑛
  • 81. 𝐸 𝛽1 = 𝛽1
  • 82. An expected value for a random variable is the average value from a large number of repetitions of the experiment that random variable represents An expected value is the true average of a random variable across a population Expected value
  • 83. An expected value for a random variable is the average value from a large number of repetitions of the experiment that random variable represents An expected value is the true average of a random variable across a population Expected value
  • 84. An expected value is the true average of a random variable across a population 𝐸 𝑋 = some true value Expected value
  • 85. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 86. 𝐸 𝑐 = 𝑐 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍 𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍 Expectations: Properties
  • 87. 𝑬 𝒄 = 𝒄 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍 𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍 Expectations: Properties
  • 88. 𝐸 𝑐 = 𝑐 𝑬 𝒄 ∙ 𝑾 = 𝒄 ∙ 𝑬 𝑾 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍 𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍 Expectations: Properties
  • 89. 𝐸 𝑐 = 𝑐 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊 𝑬 𝑾 + 𝒁 = 𝑬 𝑾 + 𝑬 𝒁 𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍 𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍 Expectations: Properties
  • 90. 𝐸 𝑐 = 𝑐 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝑬 𝑾 − 𝒁 = 𝑬 𝑾 − 𝑬 𝒁 𝐸 𝑎 ∙ 𝑊 ± 𝑏 ∙ 𝑍 = 𝑎 ∙ 𝐸 𝑊 ± 𝑏 ∙ 𝐸 𝑍 Expectations: Properties
  • 91. 𝐸 𝑐 = 𝑐 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 − 𝑍 = 𝐸 𝑊 − 𝐸 𝑍 𝑬 𝒂 ∙ 𝑾 ± 𝒃 ∙ 𝒁 = 𝒂 ∙ 𝑬 𝑾 ± 𝒃 ∙ 𝑬 𝒁 Expectations: Properties
  • 92. 𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍 𝐸 𝑊 𝑍 ≠ 𝐸 𝑊 𝐸 𝑍 𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊 Expectations: Properties
  • 93. 𝑬 𝑾 ∙ 𝒁 ≠ 𝑬 𝑾 ∙ 𝑬 𝒁 𝐸 𝑊 𝑍 ≠ 𝐸 𝑊 𝐸 𝑍 𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊 Expectations: Properties
  • 94. 𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍 𝑬 𝑾 𝒁 ≠ 𝑬 𝑾 𝑬 𝒁 𝐸 𝑓 𝑊 ≠ 𝑓 𝐸 𝑊 Expectations: Properties
  • 95. 𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍 𝐸 𝑊 𝑍 ≠ 𝐸 𝑊 𝐸 𝑍 𝑬 𝒇 𝑾 ≠ 𝒇 𝑬 𝑾 Expectations: Properties
  • 96. 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖 𝛽1 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 97. 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖 𝛽1 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 98. 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖 𝛽1 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 99. 𝐸 𝛽1 = 𝛽1
  • 101. 𝐸 𝛽1 = 𝛽1
  • 103. 𝛽1 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 104. 𝐸( 𝛽1) = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 105. 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 106. 𝐸( 𝛽1) = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 107. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 108. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 109. 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 + 𝑍 + 𝑄 = 𝐸 𝑊 + 𝐸 𝑍 + 𝐸 𝑄
  • 110. 𝐸 𝑊 + 𝑍 = 𝐸 𝑊 + 𝐸 𝑍 𝐸 𝑊 + 𝑍 + 𝑄 = 𝐸 𝑊 + 𝐸 𝑍 + 𝐸 𝑄
  • 111. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 112. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 113. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 114. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 115. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 116. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 117. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 118. 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
  • 119. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 120. 𝐸 𝛽1 = 𝛽0 ∙ 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 121. 𝐸 𝛽1 = 𝛽0 ∙ 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 122. 𝐸 𝛽1 = 𝛽0 ∗ 𝐸 0 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 123. 𝐸 𝛽1 = 𝛽0 ∗ 0 +𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 124. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 125. 𝐸 𝛽1 = 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 126. 𝐸 𝛽1 = 𝛽1 ∙ 𝐸 𝑖=1 𝑛 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 127. 𝐸 𝛽1 = 𝛽1 ∙ 𝐸 𝑖=1 𝑛 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 128. 𝑖=1 𝑛 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 = 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 129. 𝐸 𝛽1 = 𝛽1 ∗ 𝐸 𝑖=1 𝑛 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 130. 𝐸 𝛽1 = 𝛽1 ∙ 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 131. 𝐸 𝛽1 = 𝛽1 ∙ 𝐸 1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 132. 𝐸 𝛽1 = 𝛽1 ∙ 1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 133. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 134. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 137. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 138. 𝐸 𝑊 ∙ 𝑍 ≠ 𝐸 𝑊 ∙ 𝐸 𝑍 Expectations: Properties
  • 139. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 140. 𝐸 𝛽1 = 𝛽1 + 𝑖=1 𝑛 𝐸 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 141. 𝐸 𝛽1 = 𝛽1 + 𝑖=1 𝑛 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 ∙ 𝐸 𝜖𝑖
  • 142. 𝐸 𝛽1 = 𝛽1 + 𝑖=1 𝑛 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 ∙ 0
  • 145. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 146. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 147. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 148. Peter M. Lance, PhD MEASURE Evaluation University of North Carolina at Chapel Hill September 13 and 15, 2016 Selection on Observables: Part Deux
  • 149. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 150. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 151. 𝑌0 = 𝛽0 + 𝜖 𝑌1 = 𝛽0 + 𝛽1 + 𝜖 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝜖
  • 152. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 153. 𝐸 𝛽1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝜖𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 154. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 155. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 156. 𝐸 𝛽1 = 𝛽1 𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝜖𝑖
  • 157. 𝑌0 = 𝛽0 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝜀
  • 158. 𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀
  • 159. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 160. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝛽2 ∗ 𝑥 + 𝜀 − 𝛽0 + 𝛽2 ∗ 𝑥 + 𝜀 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 162. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 163. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀 + 1 − 𝑃 ∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝜀 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖
  • 164. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀
  • 165. Cost of participation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
  • 166. Cost of participation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥
  • 167. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 168. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 169. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝛾0 + 𝛾1 ∗ 𝑥 > 0
  • 170. Benefit-Cost>0 𝑌1 − 𝑌0 − C > 0 𝛽1 − 𝐶 > 0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0
  • 172. X Y P
  • 173. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 174. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 175. Benefit-Cost>0 𝛽1 − 𝜌0 + 𝜌1 ∙ 𝑥 > 0 𝜀
  • 176. P and 𝜺 are independent
  • 177. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 178. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 179. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 180. 𝐸( 𝜏1) = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 181. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝑃𝑖 − 𝑃 ∙ 𝛽0 + 𝛽1 ∙ 𝑃𝑖 + 𝛽2 ∙ 𝑥𝑖 + 𝜀𝑖 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 182. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 183. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 184. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝛽0 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 + 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 185. 𝐸 𝜏1 = 0 +𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 186. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 187. 𝐸 𝜏1 = 𝐸 𝑖=1 𝑛 𝛽1 ∙ 𝑃𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 188. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 189. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +𝐸 𝑖=1 𝑛 𝜀𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 190. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 +0
  • 191. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 192. 𝐸 𝜏1 = 𝛽1 +𝐸 𝑖=1 𝑛 𝛽2 ∙ 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 193. 𝐸 𝑐 ∙ 𝑊 = 𝑐 ∙ 𝐸 𝑊
  • 194. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 195. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 196. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 197. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 198. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 199. 𝐸 𝜏1 = 𝛽1 +𝛽2 ∙ 𝛾1 𝑖=1 𝑛 𝑥 𝑖=1 𝑛 𝑥 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖
  • 200. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 201. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝐸 𝑖=1 𝑛 𝑥𝑖 ∙ 𝑃𝑖 − 𝑃 𝑖=1 𝑛 𝑃𝑖 − 𝑃 2
  • 202. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1
  • 203. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The Actual Causal Effect of P on y
  • 204. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y The actual causal effect of the omitted variable X on Y
  • 205. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y Th”Effect” of P on x: 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖 The actual causal effect of the omitted variable X on Y
  • 206. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 207. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 208. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 209. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 Error term now contains: 𝛽2 ∙ 𝑥
  • 210. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖 𝑬 𝝉 𝟏 ≠ 𝜷
  • 211. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y Th”Effect” of P on x: 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖 The actual causal effect of the omitted variable X on Y
  • 212. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾1 The actual causal effect of P on y Th”Effect” of P on x: 𝑥𝑖= 𝛾0 + 𝛾1 ∙ 𝑃𝑖 + 𝜗𝑖 The actual causal effect of the omitted variable X on Y
  • 213. 𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀
  • 214. 𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
  • 215. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 + 𝜖 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 216. 𝑌1 − 𝑌0 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀 − 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥2 + 𝜀 = 𝛽0 + 𝛽1 + 𝜖 − 𝛽0 − 𝜖 = 𝛽1
  • 218. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∗ 𝛽0 + 𝛽1 + 𝜖 + 1 − 𝑃 ∗ 𝛽0 + 𝜖 = 𝑃 ∗ 𝛽0 + 𝑃 ∗ 𝛽1 + 𝑃 ∗ 𝜖 +𝛽0 + 𝜖 − 𝑃 ∗ 𝛽0 − 𝑃 ∗ 𝜖 = 𝛽0 + 𝑃 ∗ 𝛽1 + 𝜖
  • 219. 𝑌 = 𝑃 ∙ 𝑌1 + 1 − 𝑃 ∙ 𝑌0 = 𝑃 ∙ 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀 + 1 − 𝑃 ∙ 𝛽0 + 𝛽2 ∙ 𝑥 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
  • 220. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
  • 221. Cost of participation 𝐶 = 𝜌0 + 𝜌1 ∙ 𝑥1 + 𝜌2 ∙ 𝑥2 + 𝜌3 ∙ 𝑥3
  • 222. True model: 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀 We actually attempt to estimate: 𝑌 = 𝜏0 + 𝜏1 ∙ 𝑃 + 𝜖
  • 223. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31
  • 224. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31 The actual causal effect of P on y
  • 225. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31 The actual causal effect of P on y Th”Effect” of P on x1: 𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖 The actual causal effect of the omitted variable X1 on Y
  • 226. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31 The actual causal effect of P on y ”Effect” of P on x1: 𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖 The actual causal effect of the omitted variable X1 on Y The actual causal effect of the omitted variable X2 on Y Th”Effect” of P on x2: 𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖
  • 227. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31 The actual causal effect of P on y ”Effect” of P on x1: 𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖 The actual causal effect of the omitted variable X1 on Y The actual causal effect of the omitted variable X2 on Y ”Effect” of P on x2: 𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖 Th”Effect” of P on x1: 𝑥3𝑖= 𝛾30 + 𝛾31 ∙ 𝑃𝑖 + 𝜗3𝑖 The actual causal effect of the omitted variable X3 on Y
  • 228. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽3 ∙ 𝛾21 + 𝛽4 ∙ 𝛾31 The actual causal effect of P on y ”Effect” of P on x1: 𝑥1𝑖= 𝛾10 + 𝛾11 ∙ 𝑃𝑖 + 𝜗1𝑖 The actual causal effect of the omitted variable X1 on Y The actual causal effect of the omitted variable X2 on Y ”Effect” of P on x2: 𝑥2𝑖= 𝛾20 + 𝛾21 ∙ 𝑃𝑖 + 𝜗2𝑖 Th”Effect” of P on x3: 𝑥3𝑖= 𝛾30 + 𝛾31 ∙ 𝑃𝑖 + 𝜗3𝑖 The actual causal effect of the omitted variable X3 on Y
  • 229. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
  • 230. Potential outcomes 𝑌0 = 𝛽0 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝜀 𝑌1 = 𝛽0 + 𝛽1 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝜀 Costs of participation 𝐶 = 𝜌0 + 𝜌2 ∙ 𝑥2 + 𝜌3 ∙ 𝑥3
  • 232. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
  • 233. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾11 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
  • 234. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
  • 236. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21 + 𝛽3 ∙ 𝛾31
  • 237. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21
  • 239. 𝐸 𝜏1 = 𝛽1 + 𝛽2 ∙ 𝛾21
  • 241. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥1 + 𝛽3 ∙ 𝑥2 + 𝛽4 ∙ 𝑥3 + 𝜀
  • 243. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 𝐸 𝛽1 = 𝛽1
  • 244. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 Regress 𝑌 on 𝑃 and 𝑥 𝐸 𝛽1 = 𝛽1
  • 245. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 Regress 𝑌 on 𝑃 and 𝑥 𝐸 𝛽1 = 𝛽1
  • 246. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 Regress 𝑌 on 𝑃 and 𝑥 and 𝑍 𝐸 𝛽1 ≠ 𝛽1
  • 247. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽2 ∙ 𝑥 + 𝜀 Regress 𝑌 on 𝑃 and 𝑥 and 𝑍 𝐸 𝛽1 ≠ 𝛽1
  • 251. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔 1.Is correlated with the regressor of interest 2.Is correlated with the error term
  • 252. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔 1.Is correlated with the regressor of interest 2.Is correlated with the error term
  • 253. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔 1.Is correlated with the regressor of interest 2.Is correlated with the error term
  • 254. 𝑌 = 𝛽0 + 𝛽1 ∙ 𝑃 + 𝛽𝑧 ∙ 𝑍 + 𝜔 1.Is correlated with the regressor of interest 2.Is correlated with the error term
  • 256. X Y P
  • 257. 1. 𝐸 𝑌1 |𝑋 = 𝑐 ≠ 𝐸 𝑌1 |𝑋 = 𝑘 𝐸 𝑌0 |𝑋 = 𝑐 ≠ 𝐸 𝑌0 |𝑋 = 𝑘 2. 𝑃𝑟 𝑃 = 1|𝑋 = 𝑐 ≠ 𝑃𝑟 𝑃 = 1|𝑋 = 𝑘 𝐸 𝑋|𝑃 = 1 ≠ 𝐸 𝑋|𝑃 = 0
  • 258. 𝑋 = 0 if male 1 if female
  • 259. 𝐸 𝑌1 |𝑋 𝐸 𝑌0 |𝑋 𝐸 𝑌1 |𝑋 − 𝐸 𝑌 0 |𝑋 𝑋 = 0 6 4 2 𝑋 = 1 5 1 4
  • 260. 𝐸 𝑌1 |𝑋 𝐸 𝑌0 |𝑋 𝐸 𝑌1 |𝑋 − 𝐸 𝑌 0 |𝑋 𝑋 = 0 6 4 2 𝑋 = 1 5 1 4 𝐸 𝑌1 − 𝑌0 |𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑌1 − 𝑌0 |𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = 2 ∙ .5 + 4 ∙ .5 = 3
  • 261. 𝐸 𝑌1 |𝑋 𝐸 𝑌0 |𝑋 𝐸 𝑌1 |𝑋 − 𝐸 𝑌 0 |𝑋 𝑋 = 0 6 4 2 𝑋 = 1 5 1 4 𝐸 𝑌1 |𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑌1 |𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = 6 ∙ .5 + 5 ∙ .5 = 5.5
  • 262. 𝐸 𝑌1 |𝑋 𝐸 𝑌0 |𝑋 𝐸 𝑌1 |𝑋 − 𝐸 𝑌 0 |𝑋 𝑋 = 0 6 4 2 𝑋 = 1 5 1 4 𝐸 𝑌0 |𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑌0 |𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = 4 ∙ .5 + 1 ∙ .5 = 2.5
  • 263. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3
  • 264. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3
  • 265. 𝑛 = 1000 𝑖=1 𝑛 𝑋𝑖 𝑛 = 𝑖=1 1000 𝑋𝑖 1000 ≈ 500 𝑖=1 𝑛 𝑃𝑖 𝑛 = 𝑖=1 1000 𝑃𝑖 1000 ≈ 300
  • 266. 𝑛 = 1000 𝑖=1 𝑛 𝑋𝑖 𝑛 = 𝑖=1 1000 𝑋𝑖 1000 ≈ .5 𝑖=1 𝑛 𝑃𝑖 𝑛 = 𝑖=1 1000 𝑃𝑖 1000 ≈ 300
  • 267. 𝑛 = 1000 𝑖=1 𝑛 𝑋𝑖 𝑛 = 𝑖=1 1000 𝑋𝑖 1000 ≈ .5 𝑖=1 𝑛 𝑃𝑖 𝑛 = 𝑖=1 1000 𝑃𝑖 1000 ≈ .3
  • 268. 𝑗=1 300 𝑌𝑗 300 : 6 ∙ .16667 + 5 ∙ .8333 = 5.16652
  • 269. 𝑗=1 300 𝑌𝑗 300 : 6 ∙ .16667 + 5 ∙ .8333 = 5.16652 𝑗=1 700 𝑌𝑗 700 : 4 ∙ .6428 + 1 ∙ .3571 = 2.9286
  • 270. ?
  • 271. 𝑖 = 237 𝑋237 = 0 𝑃237 = 1 𝑌237 = 𝑌237 1 = 5.3
  • 272. 𝑖 = 237 𝑋237 = 0 𝑃237 = 1 𝑌237 = 𝑌237 1 = 5.3
  • 273. 𝑖 = 237 𝑋237 = 0 𝑃237 = 1 𝑌237 = 𝑌237 1 = 5.3
  • 274. 𝑖 = 237 𝑋237 = 0 𝑃237 = 1 𝑌237 = 𝑌237 1 = 5.3
  • 275. 𝑖 = 237 𝑋237 = 0 𝑃237 = 1 𝑌237 = 𝑌237 1 = 6.3
  • 276. 𝐼237 = 𝑌237 1 − 𝑌237 0 = 6.3−?
  • 282. 𝑘=0 𝐾 𝐸 𝐼|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘 = 𝑘=0 𝐾 𝐸 𝑌1 − 𝑌0 |𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
  • 283. 𝑘=0 𝐾 𝐸 𝐼|𝑋 = 𝑘, 𝑃 = 1 ∙ 𝑃𝑟 𝑋 = 𝑘|𝑃 = 1 = 𝑘=0 𝐾 𝐸 𝑌1 − 𝑌0 |𝑋 = 𝑘, 𝑃 = 1 ∙ 𝑃𝑟 𝑋 = 𝑘|𝑃 = 1
  • 284. 𝐼237 = 𝑌237 1 − 𝑌237 0 = 6.3−?
  • 285. 𝑘=0 𝐾 𝐸 𝐼|𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘 = 𝑘=0 𝐾 𝐸 𝑌1 − 𝑌0 |𝑋 = 𝑘 ∙ 𝑃𝑟 𝑋 = 𝑘
  • 286. X Y P
  • 288. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 5,760 potential “types”
  • 289. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 2 potential “types”
  • 290. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 10 potential “types”
  • 291. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 40 potential “types”
  • 292. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 80 potential “types”
  • 293. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 480 potential “types”
  • 294. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 2,880 potential “types”
  • 295. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 5,760 potential “types”
  • 296. 2X Gender-male/female 5X SES-5 quintiles 4X Age-broken up into 4 categories 2X Sector-Urban/Rural 6X Religion-Christian, Muslim, Hindu, Buddhist, Jewish, Traditional. 6X Occupation-6 occupation types 2 Insurance-Insured/not insured ____ 5,760 potential “types”
  • 298. 𝐼237 = 𝑌237 1 − 𝑌237 0 = 6.3−?
  • 299. 𝐼237 = 𝑌237 1 − 𝑌237 0 = 6.3−?
  • 302. 𝑃𝑟 𝑃 = 1 𝑋 = 𝑒𝑥𝑝 𝛽0 + 𝛽1 ∙ 𝑋 1 + 𝑒𝑥𝑝 𝛽0 + 𝛽1 ∙ 𝑋
  • 303. The basics of the method 1. Pool your sample of participants and non-participants and define various characteristics 𝑋. 2. Estimate the probability of program participation conditional on Pr 𝑃 = 1|𝑋 3. Compute the propensity score using the fitted binary participation model. 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 4. Find a counterfactual outcome for each individual by identifying some individual who did experience the counterfactual conditions and had a similar propensity score
  • 304. Matching approaches 1. Nearest neighbor 2. Caliper 3. (Budget) Caliper 4. Weighting
  • 305. Matching approaches 1. Nearest neighbor 2. Caliper 3. (Budget) Caliper 4. Weighting
  • 309. Other applications of the propensity score 1.Weighting 2.Regression
  • 310. Other applications of the propensity score 1.Weighting 2.Regression
  • 311. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations
  • 312. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants
  • 313. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants 700 non-participants
  • 314. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants 700 non-participants 50 men 250 women
  • 315. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants 700 non-participants 50 men 250 women 450 men 250 women
  • 316. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants 700 non-participants 500 men 500 women 450 men 250 women
  • 317. 𝐸 𝑃 = 1|𝑋 𝐸 𝑃 = 0|𝑋 𝑋 = 0 .1 .9 𝑋 = 1 .5 .5 𝐸 𝑃 = 1|𝑋 = 0 ∙ 𝑃𝑟 𝑋 = 0 +𝐸 𝑃 = 1|𝑋 = 1 ∙ 𝑃𝑟 𝑋 = 1 = .1 ∙ .5 + .5 ∙ .5 = .3 1,000 observations 300 participants 700 non-participants 500 men 500 women 500 men 500 women
  • 318. 𝑊𝑌𝑖 = 𝑃𝑖 ∙ 𝑌𝑖 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 − 1 − 𝑃𝑖 ∙ 𝑌𝑖 1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 𝐴𝑇𝐸 = 𝑖=1 𝑛 𝑊𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 + 1 − 𝑃𝑖 1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
  • 319. 𝑊𝑌𝑖 = 𝑃𝑖 ∙ 𝑌𝑖 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 − 1 − 𝑃𝑖 ∙ 𝑌𝑖 1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 𝐴𝑇𝐸 = 𝑖=1 𝑛 𝑊𝑌𝑖 𝒊=𝟏 𝒏 𝑷𝒊 𝑷𝒓 𝑷𝒊 = 𝟏|𝑿𝒊 + 𝟏 − 𝑷𝒊 𝟏 − 𝑷𝒓 𝑷𝒊 = 𝟏|𝑿𝒊
  • 320. 𝑊𝑌𝑖 = 𝑃𝑖 ∙ 𝑌𝑖 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 − 1 − 𝑃𝑖 ∙ 𝑌𝑖 1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 𝐴𝑇𝐸 = 𝑖=1 𝑛 𝑊𝑌𝑖 𝑖=1 𝑛 𝑃𝑖 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖 + 1 − 𝑃𝑖 1 − 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
  • 321. Other applications of the propensity score 1.Weighting 2.Regression
  • 322. Regress 𝑌𝑖 on 𝑃𝑖 and 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
  • 323. Regress 𝑌𝑖 on 𝑃𝑖 and 𝑃𝑟 𝑃𝑖 = 1|𝑋𝑖
  • 325. Links: The manual: http://www.measureevaluation.org/resources/publications/ms- 14-87-en The webinar introducing the manual: http://www.measureevaluation.org/resources/webinars/metho ds-for-program-impact-evaluation My email: pmlance@email.unc.edu
  • 326. MEASURE Evaluation is funded by the U.S. Agency for International Development (USAID) under terms of Cooperative Agreement AID-OAA-L-14-00004 and implemented by the Carolina Population Center, University of North Carolina at Chapel Hill in partnership with ICF International, John Snow, Inc., Management Sciences for Health, Palladium Group, and Tulane University. The views expressed in this presentation do not necessarily reflect the views of USAID or the United States government. www.measureevaluation.org