Electron transport chain power point

6,571 views

Published on

Published in: Education, Technology, Business
1 Comment
8 Likes
Statistics
Notes
No Downloads
Views
Total views
6,571
On SlideShare
0
From Embeds
0
Number of Embeds
28
Actions
Shares
0
Downloads
197
Comments
1
Likes
8
Embeds 0
No embeds

No notes for slide

Electron transport chain power point

  1. 1. The Electron Transport Chain
  2. 2. Overview <ul><li>Review Glycolysis </li></ul><ul><li>Review Krebs Cycle </li></ul><ul><li>Where does the ETC occur? </li></ul><ul><ul><li>Inner membrane of the mitochondria </li></ul></ul><ul><li>What goes to the ETC? </li></ul><ul><ul><li>Our electron carriers! NADH and FADH 2 </li></ul></ul><ul><li>Where do the electron carriers come from? </li></ul><ul><ul><li>Glycolysis and the Krebs Cycle </li></ul></ul>
  3. 3. A Lil’ Bit About those electron shuttles (NADH and FADH 2 ) <ul><li>FADH 2 makes 2 ATPs </li></ul><ul><li>NADH from glycolysis makes 2 ATPs </li></ul><ul><ul><li>Occurs cytoplasm </li></ul></ul><ul><li>NADH from Krebs cycle make 3 ATPs </li></ul><ul><ul><li>Occurs in matrix </li></ul></ul><ul><li>Why the difference in #s? </li></ul><ul><ul><li>The NADH made in glycolysis has to use a little bit of energy to get into the mitochondria </li></ul></ul>
  4. 4. A Lil’ Bit About the ETC <ul><li>What is the inner mitochondrial membrane like? </li></ul><ul><ul><li>Phospholipid bilayer </li></ul></ul><ul><li>What makes up the ETC? </li></ul><ul><ul><li>A series of protein complexes that pass these high E electrons along </li></ul></ul><ul><li>Why do we need to pass the electrons along? </li></ul><ul><ul><li>To pump those hydrogen ions (that tagged along) across the inner membrane to make a GRADIENT </li></ul></ul><ul><ul><li>Every time an electron is passed down the chain, one H+ ionis pumped across the membrane </li></ul></ul><ul><ul><li>What is a gradient? </li></ul></ul><ul><ul><ul><li>When there is a high concentration of something on one side of a membrane and a low concentration on the other side, THEREFORE diffusion occurs </li></ul></ul></ul><ul><li>vcell.ndsu.nodak.edu/animations/etc/first.htm </li></ul>
  5. 6. So who are these guys that make up the ETC? <ul><li>#1 Big Protein  NADH dehydrogenase </li></ul><ul><li>#2 Big Protein  Cytochrome b-c1 </li></ul><ul><li>#3 Big Protein  Cytochrome Oxidase </li></ul><ul><li>#4 Big Protein (most important!)  ATP Synthase </li></ul><ul><li>We have 2 smaller protein shuttles that are involved as well: </li></ul><ul><ul><li>Ubiquinone (You-bic-win-own) </li></ul></ul><ul><ul><ul><li>Carries two electrons from #1 big protein to #2 big protein </li></ul></ul></ul><ul><ul><li>Cytochrome c </li></ul></ul><ul><ul><ul><li>Carries one electron at a time from #2 big protein to #3 big protein </li></ul></ul></ul>
  6. 9. The Job of the #3 Big Protein: Cytochrome Oxidase (the matchmaker) <ul><li>Look at the name…what do you think is involved here? (remember, we are almost to the end of the ETC) </li></ul><ul><ul><li>OXYGEN!! </li></ul></ul><ul><li>#3 big protein waits for 4 electrons to enter </li></ul><ul><li>When that happens, 8 H+ ions come into with O 2 (2 atoms of oxygen)… </li></ul><ul><li>Time to mix and mingle! </li></ul><ul><ul><li>2 e-, 2 H+, and an oxygen join together to make H 2 O </li></ul></ul><ul><ul><li>This happens again with the other oxygen </li></ul></ul><ul><ul><li>These 2 water molecules are released as products (of cellular respiration) </li></ul></ul><ul><ul><li>But who is left by themselves in the #3 Big Protein? </li></ul></ul><ul><ul><ul><li>4 H+ ion…the party is over, no more e- or oxygen to pick up, they leave :o( (get pumped across membrane) </li></ul></ul></ul>
  7. 10. Uh Oh…its getting a little crowded… <ul><li>By this time, we have way too many H+ ions on one side (there is a gradient=lots of pot. E) </li></ul><ul><li>The ions will diffuse and get pumped back to the less crowded side </li></ul><ul><li>Who allows these ions to cross back? </li></ul><ul><ul><li>ATP Synthase </li></ul></ul><ul><li>Every time an H+ goes thru, ATP synthase turns, attaching an ADP to an inorganic phosphate making… </li></ul><ul><li>ATP!!! </li></ul>vcell.ndsu.nodak.edu/animations/etc/first.htm
  8. 11. Chemiosmosis <ul><li>Diffusion of ions across a membrane </li></ul><ul><li>Ex. H+ ions flowing through ATP synthase in the ETC </li></ul><ul><li>Proton Gradient </li></ul><ul><ul><li>Flow of High concentration of protons to low concentration of protons </li></ul></ul>
  9. 12. <ul><li>Now the Cell has energy to do work! What types? </li></ul><ul><ul><li>Mechanical </li></ul></ul><ul><ul><li>Chemical </li></ul></ul><ul><ul><li>Transport </li></ul></ul><ul><li>If there is no H+ ion concentration gradient, ATP synthase will NOT turn, and if it does not turn, no ATP is made= NO ENERGY!! (very BAD) </li></ul>
  10. 13. Cellular Respiration Totals For 1 Glucose Molecule <ul><li>Glycolysis </li></ul><ul><ul><li>2 NADH  to the ETC to make 4 ATP (2x2) </li></ul></ul><ul><ul><li>4 ATP – 2 ATPs used= 2ATP </li></ul></ul><ul><ul><li>2 pyruvates coverted to 2 acetyl CoA  2 NADH to go to the ETC to make 6 ATPs (2x3) </li></ul></ul><ul><li>Krebs cycle </li></ul><ul><ul><li>2 ATPs </li></ul></ul><ul><ul><li>6 NADH x 3 atp per NADH= 18 ATPs </li></ul></ul><ul><ul><li>2 FADH 2 x 2 atp per FADH 2 = 4 ATPs </li></ul></ul><ul><li>Net Total: 36 ATPs </li></ul>
  11. 14. Tid Bits <ul><li>36 ATPs is 38% of the total energy contained in glucose </li></ul><ul><li>What about the other 62%? </li></ul><ul><ul><li>It’s is released as heat </li></ul></ul><ul><ul><li>Imagine all use cells working hard giving off heat…that is why you are hot after exercising! </li></ul></ul><ul><li>Each molecule of ATP/ADP travels between the mitochondria and the cytoplasm approximately once a minute </li></ul><ul><li>Each day, 2 x 10 16 molecules of ADP are phosphorylated in our bodies: 160kg/day. </li></ul><ul><li>Each ATP Synthase complex can phosphorylate up to 100 molecules of ADP per second. </li></ul>
  12. 17. vcell.ndsu.nodak.edu/animations/etc/first.htm http://vcell.ndsu.nodak.edu/animations/etc/first.htm

×