Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this document? Why not share!

- SOLUTION MANUAL OF DISCRETE EVENT S... by vtunotesbysree 2754 views
- Introduction to Simulation by chimco.net 34537 views
- Ejercicio de Simulación by Leonardo Daniel L... 4579 views
- 8. probabilidad y variables aleato... by Leonardo Daniel L... 3008 views
- Simulation by Leonardo Daniel L... 5860 views
- SIMULATION by Eminent Planners 23565 views

6,714 views

Published on

No Downloads

Total views

6,714

On SlideShare

0

From Embeds

0

Number of Embeds

1

Shares

0

Downloads

342

Comments

0

Likes

2

No embeds

No notes for slide

- 1. PART ONEIntroduction toDiscrete-Event SystemSimulation
- 2. 1Introduction to SimulationA simulation is the imitation of the operation of a real-world process or sys-tem over time. Whether done by hand or on a computer, simulation involvesthe generation of an artiﬁcial history of a system, and the observation of thatartiﬁcial history to draw inferences concerning the operating characteristics ofthe real system. The behavior of a system as it evolves over time is studied by developinga simulation model. This model usually takes the form of a set of assumptionsconcerning the operation of the system. These assumptions are expressed inmathematical, logical, and symbolic relationships between the entities, or ob-jects of interest, of the system. Once developed and validated, a model canbe used to investigate a wide variety of “what-if” questions about the real-world system. Potential changes to the system can ﬁrst be simulated in orderto predict their impact on system performance. Simulation can also be used tostudy systems in the design stage, before such systems are built. Thus, simula-tion modeling can be used both as an analysis tool for predicting the effect ofchanges to existing systems, and as a design tool to predict the performance ofnew systems under varying sets of circumstances. In some instances, a model can be developed which is simple enough tobe “solved” by mathematical methods. Such solutions may be found by the useof differential calculus, probability theory, algebraic methods, or other math-ematical techniques. The solution usually consists of one or more numericalparameters which are called measures of performance of the system. How-ever, many real-world systems are so complex that models of these systemsare virtually impossible to solve mathematically. In these instances, numerical,computer-based simulation can be used to imitate the behavior of the system 3
- 3. 4 Chap. 1 Introduction to Simulationover time. From the simulation, data are collected as if a real system were beingobserved. This simulation-generated data is used to estimate the measures ofperformance of the system. This book provides an introductory treatment of the concepts and meth-ods of one form of simulation modeling— discrete-event simulation modeling.The ﬁrst chapter initially discusses when to use simulation, its advantages anddisadvantages, and actual areas of application. Then the concepts of systemand model are explored. Finally, an outline is given of the steps in building andusing a simulation model of a system.1.1 When Is Simulation the Appropriate Tool?The availability of special-purpose simulation languages, massive computingcapabilities at a decreasing cost per operation, and advances in simulationmethodologies have made simulation one of the most widely used and acceptedtools in operations research and systems analysis. Circumstances under whichsimulation is the appropriate tool to use have been discussed by many authors,from Naylor et al. [1966] to Banks et al. [1996]. Simulation can be used for thefollowing purposes: 1. Simulation enables the study of, and experimentation with, the internal interactions of a complex system, or of a subsystem within a complex system. 2. Informational, organizational, and environmental changes can be simu- lated, and the effect of these alterations on the model’s behavior can be observed. 3. The knowledge gained in designing a simulation model may be of great value toward suggesting improvement in the system under investigation. 4. By changing simulation inputs and observing the resulting outputs, valu- able insight may be obtained into which variables are most important and how variables interact. 5. Simulation can be used as a pedagogical device to reinforce analytic so- lution methodologies. 6. Simulation can be used to experiment with new designs or policies prior to implementation, so as to prepare for what may happen. 7. Simulation can be used to verify analytic solutions. 8. By simulating different capabilities for a machine, requirements can be determined. 9. Simulation models designed for training allow learning without the cost and disruption of on-the-job learning.
- 4. Sec. 1.2 When Simulation Is Not Appropriate 5 10. Animation shows a system in simulated operation so that the plan can be visualized. 11. The modern system (factory, wafer fabrication plant, service organization, etc.) is so complex that the interactions can be treated only through simulation.1.2 When Simulation Is Not AppropriateThis section is based on an article by Banks and Gibson [1997], who gaveten rules for determining when simulation is not appropriate. The ﬁrst ruleindicates that simulation should not be used when the problem can be solvedusing common sense. An example is given of an automobile-tag facility servingcustomers who arrive randomly at an average rate of 100/hour and are served ata mean rate of 12/hour. To determine the minimum number of servers needed,simulation is not necessary. Just compute 100/12 = 8.33, indicating that nine ormore servers are needed. The second rule says that simulation should not be used if the problemcan be solved analytically. For example, under certain conditions, the averagewaiting time in the example above can be determined from curves that weredeveloped by Hillier and Lieberman [1995]. The next rule says that simulation should not be used if it is easier toperform direct experiments. An example of a fast-food drive-in restaurant isgiven, where it was less expensive to have a person use a hand-held terminal andvoice communication to determine the effect of adding another order stationon customer waiting time. The fourth rule says not to use simulation, if the costs exceed the savings.There are many steps in completing a simulation as discussed in Section 1.11,and these must be done thoroughly. If a simulation study costs $20,000 and thesavings might be $10,000, simulation would not be appropriate. Rules ﬁve and six indicate that simulation should not be performed if theresources or time are not available. If the simulation is estimated to cost $20,000and only $10,000 is available, the suggestion is not to venture into a simulationstudy. Similarly, if a decision in needed is two weeks and a simulation will takea month, the simulation study is not advised. Simulation takes data, sometimes lots of data. If no data is available, noteven estimates, simulation is not advised. The next rule concerns the ability to verify and validate the model. Ifthere is not enough time or the personnel are not available, simulation is notappropriate. If managers have unreasonable expectations—say, too much too soon—or the power of simulation is overestimated, simulation may not be appropriate. Last, if system behavior is too complex or can’t be deﬁned, simulation isnot appropriate. Human behavior is sometimes extremely complex to model.
- 5. 6 Chap. 1 Introduction to Simulation1.3 Advantages and Disadvantages of SimulationSimulation is intuitively appealing to a client because it mimics what happensin a real system or what is perceived for a system that is in the design stage. Theoutput data from a simulation should directly correspond to the outputs thatcould be recorded from the real system. Additionally, it is possible to developa simulation model of a system without dubious assumptions (such as the samestatistical distribution for every random variable) of mathematically solvablemodels. For these, and other reasons, simulation is frequently the technique ofchoice in problem solving. In contrast to optimization models, simulation models are “run” ratherthan solved. Given a particular set of input and model characteristics, the modelis run and the simulated behavior is observed. This process of changing inputsand model characteristics results in a set of scenarios that are evaluated. Agood solution, either in the analysis of an existing system or the design of a newsystem, is then recommended for implementation. Simulation has many advantages, and even some disadvantages. Theseare listed by Pegden, Shannon, and Sadowski [1995]. The advantages are: 1. New policies, operating procedures, decision rules, information ﬂows, or- ganizational procedures, and so on can be explored without disrupting ongoing operations of the real system. 2. New hardware designs, physical layouts, transportation systems, and so on, can be tested without committing resources for their acquisition. 3. Hypotheses about how or why certain phenomena occur can be tested for feasibility. 4. Time can be compressed or expanded allowing for a speedup or slowdown of the phenomena under investigation. 5. Insight can be obtained about the interaction of variables. 6. Insight can be obtained about the importance of variables to the perfor- mance of the system. 7. Bottleneck analysis can be performed indicating where work-in-process, information, materials, and so on are being excessively delayed. 8. A simulation study can help in understanding how the system operates rather than how individuals think the system operates. 9. “What-if” questions can be answered. This is particularly useful in the design of new systems.The disadvantages are: 1. Model building requires special training. It is an art that is learned over time and through experience. Furthermore, if two models are constructed by two competent individuals, they may have similarities, but it is highly unlikely that they will be the same.
- 6. Sec. 1.4 Areas of Application 7 2. Simulation results may be difﬁcult to interpret. Since most simulation outputs are essentially random variables (they are usually based on ran- dom inputs), it may be hard to determine whether an observation is a result of system interrelationships or randomness. 3. Simulation modeling and analysis can be time consuming and expensive. Skimping on resources for modeling and analysis may result in a simula- tion model or analysis that is not sufﬁcient for the task. 4. Simulation is used in some cases when an analytical solution is possible, or even preferable, as discussed in Section 1.2. This might be particularly true in the simulation of some waiting lines where closed-form queueing models are available.In defense of simulation, these four disadvantages, respectively, can be offsetas follows: 1. Vendors of simulation software have been actively developing packages that contain models that need only input data for their operation. Such models have the generic tag “simulators” or “templates.” 2. Many simulation software vendors have developed output analysis capa- bilities within their packages for performing very thorough analysis. 3. Simulation can be performed faster today than yesterday, and even faster tomorrow. This is attributable to the advances in hardware that permit rapid running of scenarios. It is also attributable to the advances in many simulation packages. For example, some simulation software contains constructs for modeling material handling using transporters such as fork lift trucks, conveyors, automated guided vehicles, and others. 4. Closed-form models are not able to analyze most of the complex systems that are encountered in practice. In nearly eight years of consulting prac- tice by one of the authors, not one problem was encountered that could have been solved by a closed-form solution.1.4 Areas of ApplicationThe applications of simulation are vast. The Winter Simulation Conference(WSC) is an excellent way to learn more about the latest in simulation ap-plications and theory. There are also numerous tutorials at both the begin-ning and advanced levels. WSC is sponsored by six technical societies and theNational Institute of Standards and Technology (NIST). The technical soci-eties are American Statistical Association (ASA), Association for ComputingMachinery/Special Interest Group on Simulation (ACM/SIGSIM), Instituteof Electrical and Electronics Engineers: Computer Society (IEEE/CS), Insti-tute of Electrical and Electronics Engineers: Systems, Man and CyberneticsSociety (IEEE/SMCS), Institute of Industrial Engineers (IIE), Institute forOperations Research and the Management Sciences: College on Simulation(INFORMS/CS), and The Society for Computer Simulation (SCS). Note that
- 7. 8 Chap. 1 Introduction to SimulationIEEE is represented by two bodies. Information about the upcoming WSC canbe obtained from www.wintersim.org Some of the areas of application at a recent WSC, with the subject matterwithin those areas, is listed below:Manufacturing Applications Analysis of electronics assembly operations Design and evaluation of a selective assembly station for high-precision scroll compressor shells Comparison of dispatching rules for semiconductor manufacturing using large-facility models Evaluation of cluster tool throughput for thin-ﬁlm head production Determining optimal lot size for a semiconductor back-end factory Optimization of cycle time and utilization in semiconductor test manufac- turing Analysis of storage and retrieval strategies in a warehouse Investigation of dynamics in a service-oriented supply chain Model for an Army chemical munitions disposal facilitySemiconductor Manufacturing Comparison of dispatching rules using large-facility models The corrupting inﬂuence of variability A new lot-release rule for wafer fabs Assessment of potential gains in productivity due to proactive reticle man- agement Comparison of a 200-mm and 300-mm X-ray lithography cell Capacity planning with time constraints between operations 300-mm logistic system risk reductionConstruction Engineering Construction of a dam embankment Trenchless renewal of underground urban infrastructures Activity scheduling in a dynamic, multiproject setting Investigation of the structural steel erection process Special-purpose template for utility tunnel construction
- 8. Sec. 1.5 Systems and System Environment 9Military Applications Modeling leadership effects and recruit type in an Army recruiting station Design and test of an intelligent controller for autonomous underwater ve- hicles Modeling military requirements for nonwarﬁghting operations Multitrajectory performance for varying scenario sizes Using adaptive agents in U.S. Air Force pilot retentionLogistics, Transportation, and Distribution Applications Evaluating the potential beneﬁts of a rail-trafﬁc planning algorithm Evaluating strategies to improve railroad performance Parametric modeling in rail-capacity planning Analysis of passenger ﬂows in an airport terminal Proactive ﬂight-schedule evaluation Logistics issues in autonomous food production systems for extended-duration space exploration Sizing industrial rail-car ﬂeets Product distribution in the newspaper industry Design of a toll plaza Choosing between rental-car locations Quick-response replenishmentBusiness Process Simulation Impact of connection bank redesign on airport gate assignment Product development program planning Reconciliation of business and systems modeling Personnel forecasting and strategic workforce planningHuman Systems Modeling human performance in complex systems Studying the human element in air trafﬁc control1.5 Systems and System EnvironmentTo model a system, it is necessary to understand the concept of a system andthe system boundary. A system is deﬁned as a group of objects that are joinedtogether in some regular interaction or interdependence toward the accom-plishment of some purpose. An example is a production system manufacturingautomobiles. The machines, component parts, and workers operate jointlyalong an assembly line to produce a high-quality vehicle. A system is often affected by changes occurring outside the system. Suchchanges are said to occur in the system environment [Gordon, 1978]. In model-ing systems, it is necessary to decide on the boundary between the system andits environment. This decision may depend on the purpose of the study.
- 9. 10 Chap. 1 Introduction to Simulation In the case of the factory system, for example, the factors controlling the arrival of orders may be considered to be outside the inﬂuence of the factory and therefore part of the environment. However, if the effect of supply on demand is to be considered, there will be a relationship between factory output and arrival of orders, and this relationship must be considered an activity of the system. Similarly, in the case of a bank system, there may be a limit on the maximum interest rate that can be paid. For the study of a single bank, this would be regarded as a constraint imposed by the environment. In a study of the effects of monetary laws on the banking industry, however, the setting of the limit would be an activity of the system. [Gordon, 1978]1.6 Components of a SystemIn order to understand and analyze a system, a number of terms need to bedeﬁned. An entity is an object of interest in the system. An attribute is aproperty of an entity. An activity represents a time period of speciﬁed length.If a bank is being studied, customers might be one of the entities, the balancein their checking accounts might be an attribute, and making deposits might bean activity. The collection of entities that compose a system for one study mightbe only a subset of the overall system for another study [Law and Kelton,2000]. For example, if the bank mentioned above is being studied to determinethe number of tellers needed to provide for paying and receiving, the systemcan be deﬁned as that portion of the bank consisting of the regular tellersand the customers waiting in line. If the purpose of the study is expanded todetermine the number of special tellers needed (to prepare cashier’s checks, tosell traveler’s checks, etc.), the deﬁnition of the system must be expanded. The state of a system is deﬁned to be that collection of variables necessaryto describe the system at any time, relative to the objectives of the study. Inthe study of a bank, possible state variables are the number of busy tellers, thenumber of customers waiting in line or being served, and the arrival time ofthe next customer. An event is deﬁned as an instantaneous occurrence thatmay change the state of the system. The term endogenous is used to describeactivities and events occurring within a system, and the term exogenous is usedto describe activities and events in the environment that affect the system.In the bank study, the arrival of a customer is an exogenous event, and thecompletion of service of a customer is an endogenous event. Table 1.1 lists examples of entities, attributes, activities, events, and statevariables for several systems. Only a partial listing of the system componentsis shown. A complete list cannot be developed unless the purpose of the studyis known. Depending on the purpose, various aspects of the system will be ofinterest, and then the listing of components can be completed.
- 10. Table 1.1 Examples of Systems and Components System Entities Attributes Activities Events State Variables Banking Customers Checking account Making deposits Arrival; Number of busy tellers; number balance departure of customers waiting Rapid rail Riders Origination; Traveling Arrival at Number of riders waiting at each destination station; station; number of riders in arrival at transit destination Production Machines Speed; capacity; Welding; Breakdown Status of machines (busy, idle, breakdown rate stamping or down) Communications Messages Length; Transmitting Arrival at Number waiting to be transmitted destination destination Sec. 1.6 Inventory Warehouse Capacity Withdrawing Demand Levels of inventory; backlogged demands Components of a System 11
- 11. 12 Chap. 1 Introduction to Simulation1.7 Discrete and Continuous SystemsSystems can be categorized as discrete or continuous. “Few systems in practiceare wholly discrete or continuous, but since one type of change predominatesfor most systems, it will usually be possible to classify a system as being eitherdiscrete or continuous” [Law and Kelton, 2000]. A discrete system is one inwhich the state variable(s) change only at a discrete set of points in time. Thebank is an example of a discrete system since the state variable, the numberof customers in the bank, changes only when a customer arrives or when theservice provided a customer is completed. Figure 1.1 shows how the numberof customers changes only at discrete points in time. Number of customers waiting in line or being served 3 2 1 0 Time t Figure 1.1 Discrete-system state variable. A continuous system is one in which the state variable(s) change continu-ously over time. An example is the head of water behind a dam. During and forsome time after a rain storm, water ﬂows into the lake behind the dam. Wateris drawn from the dam for ﬂood control and to make electricity. Evaporationalso decreases the water level. Figure 1.2 shows how the state variable, headof water behind the dam, changes for this continuous system. Head of water behind the dam Time t Figure 1.2 Continuous-system state variable.
- 12. Sec. 1.9 Types of Models 131.8 Model of a SystemSometimes it is of interest to study a system to understand the relationshipsbetween its components or to predict how the system will operate under anew policy. Sometimes it is possible to experiment with the system itself, but,not always. A new system may not yet exist; it may be only in hypotheticalform or at the design stage. Even if the system exists, it may be impracticalto experiment with it. For example, it may not be wise or possible to doublethe unemployment rate to determine the effect of employment on inﬂation. Inthe case of a bank, reducing the numbers of tellers to study the effect on thelength of waiting lines may infuriate the customers so greatly that they movetheir accounts to a competitor. Consequently, studies of systems are oftenaccomplished with a model of a system. We had a consulting job for the simulation of a redesigned port in westernAustralia. At $200 million for a loading/unloading berth, it’s not advisable toinvest that amount only to ﬁnd that the berth is inadequate for the task. A model is deﬁned as a representation of a system for the purpose ofstudying the system. For most studies, it is necessary to consider only those as-pects of the system that affect the problem under investigation. These aspectsare represented in a model of the system, and the model, by deﬁnition, is a sim-pliﬁcation of the system. On the other hand, the model should be sufﬁcientlydetailed to permit valid conclusions to be drawn about the real system. Differ-ent models of the same system may be required as the purpose of investigationchanges. Just as the components of a system were entities, attributes, and activities,models are represented similarly. However, the model contains only thosecomponents that are relevant to the study. The components of a model arediscussed more extensively in Chapter 3.1.9 Types of ModelsModels can be classiﬁed as being mathematical or physical. A mathemati-cal model uses symbolic notation and mathematical equations to represent asystem. A simulation model is a particular type of mathematical model of asystem. Simulation models may be further classiﬁed as being static or dynamic,deterministic or stochastic, and discrete or continuous. A static simulationmodel, sometimes called a Monte Carlo simulation, represents a system at aparticular point in time. Dynamic simulation models represent systems as theychange over time. The simulation of a bank from 9:00 A.M. to 4:00 P.M. is anexample of a dynamic simulation. Simulation models that contain no random variables are classiﬁed as de-terministic. Deterministic models have a known set of inputs which will result ina unique set of outputs. Deterministic arrivals would occur at a dentist’s ofﬁce
- 13. 14 Chap. 1 Introduction to Simulationif all patients arrived at the scheduled appointment time. A stochastic simula-tion model has one or more random variables as inputs. Random inputs lead torandom outputs. Since the outputs are random, they can be considered only asestimates of the true characteristics of a model. The simulation of a bank wouldusually involve random interarrival times and random service times. Thus, ina stochastic simulation, the output measures—the average number of peoplewaiting, the average waiting time of a customer—must be treated as statisticalestimates of the true characteristics of the system. Discrete and continuous systems were deﬁned in Section 1.6. Discreteand continuous models are deﬁned in an analogous manner. However, a dis-crete simulation model is not always used to model a discrete system, nor is acontinuous simulation model always used to model a continuous system. Tanksand pipes are modeled discretely by some software vendors, even though weknow that ﬂuid ﬂow is continuous. In addition, simulation models may bemixed, both discrete and continuous. The choice of whether to use a discreteor continuous (or both discrete and continuous) simulation model is a func-tion of the characteristics of the system and the objective of the study. Thus, acommunication channel could be modeled discretely if the characteristics andmovement of each message were deemed important. Conversely, if the ﬂowof messages in aggregate over the channel were of importance, modeling thesystem using continuous simulation could be more appropriate. The modelsconsidered in this text are discrete, dynamic, and stochastic.1.10 Discrete-Event System SimulationThis book is about discrete-event system simulation—the modeling of systemsin which the state variable changes only at a discrete set of points in time.The simulation models are analyzed by numerical rather than by analyticalmethods. Analytical methods employ the deductive reasoning of mathemat-ics to “solve” the model. For example, differential calculus can be used todetermine the minimum-cost policy for some inventory models. Numericalmethods employ computational procedures to “solve” mathematical models.In the case of simulation models, which employ numerical methods, modelsare “run” rather than solved; that is, an artiﬁcial history of the system is gen-erated based on the model assumptions, and observations are collected to beanalyzed and to estimate the true system performance measures. Since real-world simulation models are rather large, and since the amount of data storedand manipulated is so vast, the runs are usually conducted with the aid of acomputer. However, much insight can be obtained by simulating small modelsmanually. In summary, this book is about discrete-event system simulation in whichthe models of interest are analyzed numerically, usually with the aid of a com-puter.
- 14. Sec. 1.11 Steps in a Simulation Study 151.11 Steps in a Simulation StudyFigure 1.3 shows a set of steps to guide a model builder in a thorough and soundsimulation study. Similar ﬁgures and discussion of steps can be found in othersources [Shannon, 1975; Gordon, 1978; Law and Kelton, 2000]. The numberbeside each symbol in Figure 1.3 refers to the more detailed discussion in thetext. The steps in a simulation study are as follows:Problem formulation. Every study should begin with a statement of the prob-lem. If the statement is provided by the policy makers, or those that have theproblem, the analyst must ensure that the problem being described is clearlyunderstood. If a problem statement is being developed by the analyst, it isimportant that the policy makers understand and agree with the formulation.Although not shown in Figure 1.3, there are occasions where the problem mustbe reformulated as the study progresses. In many instances, policy makers andanalysts are aware that there is a problem long before the nature of the problemis known.Setting of objectives and overall project plan. The objectives indicate thequestions to be answered by simulation. At this point a determination shouldbe made concerning whether simulation is the appropriate methodology for theproblem as formulated and objectives as stated. Assuming it is decided thatsimulation is appropriate, the overall project plan should include a statementof the alternative systems to be considered, and a method for evaluating theeffectiveness of these alternatives. It should also include the plans for thestudy in terms of the number of people involved, the cost of the study, andthe number of days required to accomplish each phase of the work with theanticipated results at the end of each stage.Model conceptualization. The construction of a model of a system is proba-bly as much art as science. Pritsker [1998] provides a lengthy discussion of thisstep. “Although it is not possible to provide a set of instructions that will leadto building successful and appropriate models in every instance, there are somegeneral guidelines that can be followed” [Morris, 1967]. The art of modeling isenhanced by an ability to abstract the essential features of a problem, to selectand modify basic assumptions that characterize the system, and then to enrichand elaborate the model until a useful approximation results. Thus, it is best tostart with a simple model and build toward greater complexity. However, themodel complexity need not exceed that required to accomplish the purposesfor which the model is intended. Violation of this principle will only add tomodel-building and computer expenses. It is not necessary to have a one-to-one mapping between the model and the real system. Only the essence of thereal system is needed. It is advisable to involve the model user in model conceptualization. Thiswill both enhance the quality of the resulting model and increase the conﬁdenceof the model user in the application of the model. (Chapter 2 describes a
- 15. 16 Chap. 1 Introduction to Simulation 1 Problem formulation 2 Setting of objectives and overall project plan 3 4 Model Data conceptualization collection 5 Model translation No 6 Verified? Yes No 7 No Validated? Yes 8 Experimental design 9 Production runs and analysis Yes 10 Yes More runs? No 11 Documentation and reporting 12 Implementation Figure 1.3 Steps in a simulation study.
- 16. Sec. 1.11 Steps in a Simulation Study 17number of simulation models. Chapter 6 describes queueing models that canbe solved analytically. However, only experience with real systems—versustextbook problems—can “teach” the art of model building.)Data collection. There is a constant interplay between the construction ofthe model and the collection of the needed input data [Shannon, 1975]. As thecomplexity of the model changes, the required data elements may also change.Also, since data collection takes such a large portion of the total time requiredto perform a simulation, it is necessary to begin it as early as possible, usuallytogether with the early stages of model building. The objectives of the study dictate, in a large way, the kind of data to becollected. In the study of a bank, for example, if the desire is to learn about thelength of waiting lines as the number of tellers change, the types of data neededwould be the distributions of interarrival times (at different times of the day),the service-time distributions for the tellers, and historic distributions on thelengths of waiting lines under varying conditions. These last data will be usedto validate the simulation model. (Chapter 9 discusses data collection and dataanalysis; Chapter 5 discusses statistical distributions which occur frequently insimulation modeling. See also an excellent discussion by Vincent [1998].)Model translation. Since most real-world systems result in models that re-quire a great deal of information storage and computation, the model mustbe entered into a computer-recognizable format. We use the term “program,”even though it is possible to accomplish the desired result in many instanceswith little or no actual coding. The modeler must decide whether to programthe model in a simulation language such as GPSS/H © (discussed in Chapter 4)or to use special-purpose simulation software. For manufacturing and materialhandling, Chapter 4 discusses Arena ® , AutoMod © , CSIM, Extend © , MicroSaint, ProModel ® , Dened/Quest ® , Taylor Eneterprise Dynamics (ED), andWitness © . Simulation languages are powerful and ﬂexible. However, if theproblem is amenable to solution with the simulation software, the model de-velopment time is greatly reduced. Furthermore, most of the simulation soft-ware packages have added features that enhance their ﬂexibility, although theamount of ﬂexibility varies greatly.Veriﬁed? Veriﬁcation pertains to the computer program prepared for the sim-ulation model. Is the computer program performing properly? With complexmodels it is difﬁcult, if not impossible, to translate a model successfully in itsentirety without a good deal of debugging. If the input parameters and logicalstructure of the model are correctly represented in the computer, veriﬁcationhas been completed. For the most part, common sense is used in completingthis step. (Chapter 10 discusses veriﬁcation of simulation models, and Balci[1998] also discusses this topic extensively.)Validated? Validation is the determination that a model is an accurate rep-resentation of the real system. Validation is usually achieved through the cal-ibration of the model, an iterative process of comparing the model to actualsystem behavior and using the discrepancies between the two, and the insights
- 17. 18 Chap. 1 Introduction to Simulationgained, to improve the model. This process is repeated until model accuracyis judged acceptable. In the example of a bank mentioned above, data werecollected concerning the length of waiting lines under current conditions. Doesthe simulation model replicate this system measure? This is one means of val-idation. (Chapter 10 discusses the validation of simulation models, and Balci[1998] also discusses this topic extensively.)Experimental design. The alternatives that are to be simulated must be de-termined. Often, the decision concerning which alternatives to simulate maybe a function of runs that have been completed and analyzed. For each systemdesign that is simulated, decisions need to be made concerning the length of theinitialization period, the length of simulation runs, and the number of replica-tions to be made of each run. (Chapter 11 and 12 discuss issues associated withthe experimental design, and Kleijnen [1998] discusses this topic extensively.)Production runs and analysis. Production runs, and their subsequent analy-sis, are used to estimate measures of performance for the system designs thatare being simulated. [Chapters 11 and 12 discuss the analysis of simulationexperiments, and Chapter 4 discusses software to aid in this step, including Au-toStat (in AutoMod), OptQuest (in several simulation softwares), SimRunner(in ProModel) and the Arena Output Analyzer.]More Runs? Based on the analysis of runs that have been completed, the an-alyst determines if additional runs are needed and what design those additionalexperiments should follow.Documentation and reporting. There are two types of documentation: pro-gram and progress. Program documentation is necessary for numerous reasons.If the program is going to be used again by the same or different analysts, it maybe necessary to understand how the program operates. This will build conﬁ-dence in the program, so that model users and policy makers can make decisionsbased on the analysis. Also, if the program is to be modiﬁed by the same ora different analyst, this can be greatly facilitated by adequate documentation.One experience with an inadequately documented program is usually enoughto convince an analyst of the necessity of this important step. Another reasonfor documenting a program is so that model users can change parameters atwill in an effort to determine the relationships between input parameters andoutput measures of performance, or to determine the input parameters that“optimize” some output measure of performance. Musselman [1998] discusses progress reports that provide the important,written history of a simulation project. Project reports give a chronology ofwork done and decisions made. This can prove to be of great value in keepingthe project on course. Musselman suggests frequent reports (monthly, at least) so that even thosenot involved in the day-to-day operation can keep abreast. The awarenessof these others can usually enhance the successful completion of the project
- 18. Sec. 1.11 Steps in a Simulation Study 19by surfacing misunderstandings early, when the problem can be solved easily.Musselman also suggests maintaining a project log providing a comprehensiverecord of accomplishments, change requests, key decisions, and other items ofimportance. On the reporting side, Musselman suggests frequent deliverables. Thesemay or may not be the results of major accomplishments. His maxim is that“it is better to work with many intermediate milestones than with one absolutedeadline.” Possibilities prior to the ﬁnal report include a model speciﬁcation,prototype demonstrations, animations, training results, intermediate analyses,program documentation, progress reports, and presentations. He suggests thatthese deliverables should be timed judiciously over the life of the project. The result of all the analysis should be reported clearly and concisely ina ﬁnal report. This will enable the model users (now, the decision makers)to review the ﬁnal formulation, the alternative systems that were addressed,the criterion by which the alternatives were compared, the results of the ex-periments, and the recommended solution to the problem. Furthermore, ifdecisions have to be justiﬁed at a higher level, the ﬁnal report should providea vehicle of certiﬁcation for the model user/decision maker and add to thecredibility of the model and the model-building process.Implementation. The success of the implementation phase depends on howwell the previous eleven steps have been performed. It is also contingent uponhow thoroughly the analyst has involved the ultimate model user during theentire simulation process. If the model user has been thoroughly involved andunderstands the nature of the model and its outputs, the likelihood of a vigor-ous implementation is enhanced [Pritsker, 1995]. Conversely, if the model andits underlying assumptions have not been properly communicated, implemen-tation will probably suffer, regardless of the simulation model’s validity. The simulation model-building process shown in Figure 1.3 can be brokendown into four phases. The ﬁrst phase, consisting of steps 1 (Problem Formula-tion) and 2 (Setting of Objective and Overall Design), is a period of discoveryor orientation. The initial statement of the problem is usually quite “fuzzy,”the initial objectives will usually have to be reset, and the original project planwill usually have to be ﬁne-tuned. These recalibrations and clariﬁcations mayoccur in this phase, or perhaps after or during another phase (i.e., the analystmay have to restart the process). The second phase is related to model building and data collection andincludes steps 3 (Model Conceptualization), 4 (Data Collection), 5 (ModelTranslation), 6 (Veriﬁcation), and 7 (Validation). A continuing interplay isrequired among the steps. Exclusion of the model user during this phase canhave dire implications at the point of implementation. The third phase concerns running the model. It involves steps 8 (Experi-mental Design), 9 (Production Runs and Analysis), and 10 (Additional Runs).This phase must have a thoroughly conceived plan for experimenting with thesimulation model. A discrete-event stochastic simulation is in fact a statisti-
- 19. 20 Chap. 1 Introduction to Simulationcal experiment. The output variables are estimates that contain random error,and therefore a proper statistical analysis is required. Such a philosophy differssharply from that of the analyst who makes a single run and draws an inferencefrom that single data point. The fourth phase, implementation, involves steps 11 (Documentation andReporting) and 12 (Implementation). Successful implementation depends oncontinual involvement of the model user and the successful completion of everystep in the process. Perhaps the most crucial point in the entire process is step7 (Validation), because an invalid model is going to lead to erroneous results,which if implemented could be dangerous, costly, or both.REFERENCESBalci, Osman [1998], “Veriﬁcation, Validation, and Testing,” in Handbook of Simula- tion, ed. Jerry Banks, John Wiley, New York.Banks, Jerry, and Randall R. Gibson [1997], “Don’t Simulate When: 10 rules for deter- mining when simulation is not appropriate,” IIE Solutions, September.Banks, Jerry, Mark Spearman, and Van Norman [1996], “Second Look at Simulation,” OR/MS Today, Vol. 22, No. 4, August 1996.Gordon, Geoffrey [1978], System Simulation, 2d ed., Prentice-Hall, Upper Saddle River, NJ.Hillier, Frederick S., and Gerald J. Lieberman [1995], Introduction to Operations Re- search, 6th ed., McGraw-Hill, New York.Kleijnen, Jack P. C. [1998], “Experimental Design for Sensitivity Analysis, Optimization, and Validation of Simulation Models,” in Handbook of Simulation, ed. Jerry Banks, John Wiley, New York.Law, Averill M., and W. David Kelton [2000], Simulation Modeling and Analysis, 3d ed., McGraw-Hill, New York.Morris, W. T. [1967], “On the Art of Modeling,” Management Science, Vol. 13, No. 12.Musselman, Kenneth J. [1998], “Guidelines for Success,” in Handbook of Simulation, ed. Jerry Banks, John Wiley, New York.Naylor, T. H., J. L. Balintfy, D. S. Burdick, and K. Chu [1966], Computer Simulation Techniques, John Wiley, New York.Pegden, C. D., R. E. Shannon, and R. P. Sadowski [1995], Introduction to Simulation Using SIMAN, 2d ed., McGraw-Hill, New York.Pritsker, A. Alan B. [1995], Introduction to Simulation and SLAM II, 4th ed., John Wiley, New York.Pritsker, A. Alan B. [1998], “Principles of Simulation Modeling,” in Handbook of Sim- ulation, ed. Jerry Banks, John Wiley, New York.Shannon, Robert E. [1975], Systems Simulation: The Art and Science, Prentice-Hall, Upper Saddle River, NJ.Vincent, Stephen [1998], “Input Data Analysis,” in Handbook of Simulation, ed. Jerry Banks, John Wiley, New York.
- 20. Chapter 1 Exercises 21EXERCISES 1 Name several entities, attributes, activities, events, and state variables for the fol- lowing systems: (a) A small appliance repair shop (b) A cafeteria (c) A grocery store (d) A laundromat (e) A fast-food restaurant (f) A hospital emergency room (g) A taxicab company with 10 taxis (h) An automobile assembly line 2 Consider the simulation process shown in Figure 1.3. (a) Reduce the steps by at least two by combining similar activities. Give your rationale. (b) Increase the steps by at least two by separating current steps or enlarging on existing steps. Give your rationale. 3 A simulation of a major trafﬁc intersection is to be conducted with the objective of improving the current trafﬁc ﬂow. Provide three iterations, in increasing order of complexity, of steps 1 and 2 in the simulation process of Figure 1.3. 4 In what ways and at what steps might a personal computer be used to support the simulation process of Figure 1.3? 5 A simulation is to be conducted of cooking a spaghetti dinner to determine what time a person should start in order to have the meal on the table by 7:00 P.M. Read a recipe for preparing a spaghetti dinner (or ask a friend or relative, etc., for the recipe). As best you can, trace what you understand to be needed in the data- collection phase of the simulation process of Figure 1.3 in order to perform a sim- ulation in which the model includes each step in the recipe. What are the events, activities, and state variables in this system? 6 What events and activities are associated with the operation of your checkbook? 7 Read an article in the current WSC Proceedings, on the application of simulation related to your major area of study or interest, and prepare a report on how the author accomplishes the steps given in Figure 1.3. WSC Proceedings are available at www.informs-cs.org 8 Get a copy of a recent WSC Proceedings and report on the different applications discussed in an area of interest to you. WSC Proceedings are available at www.informs-cs.org 9 Get a copy of a recent WSC Proceedings and report on the most unusual application that you can ﬁnd. WSC Proceedings are available at www.informs-cs.org
- 21. 22 Chap. 1 Introduction to Simulation10 Go to the Simulation Education website at www.pitt.edu/@wjyst/nsfteachsim.html and address the following: (a) Use the links there to thoroughly answer the question, “What is simulation?” (b) What kinds of careers are available in simulation? (c) What are some recent applications of discrete-event simulation in the news? (d) What are some simulation education organizations that are currently active?11 Go to the Winter Simulation Conference website at www.wintersim.org and address the following: (a) What advanced tutorials were offered at the previous WSC or are planned at the next WSC? (b) Where and when will the next WSC be held? (c) What is the history of WSC?
- 22. 2Simulation ExamplesThis chapter presents several examples of simulations that can be performedby devising a simulation table either manually or with a spreadsheet. Thesimulation table provides a systematic method for tracking system state overtime. These examples provide insight into the methodology of discrete systemsimulation and the descriptive statistics used for predicting system performance. The simulations in this chapter entail three steps: 1. Determine the characteristics of each of the inputs to the simulation. Quite often, these may be modeled as probability distributions, either continuous or discrete. 2. Construct a simulation table. Each simulation table is different, for each is developed for the problem at hand. An example of a simulation ta- ble is shown in Table 2.1. In this example there are p inputs, xij , j = 1, 2, . . . , p , and one response, yi , for each of repetitions i = 1, 2, . . . , n . Initialize the table by ﬁlling in the data for repetition 1. 3. For each repetition i , generate a value for each of the p inputs, and eval- uate the function, calculating a value of the response yi . The input values may be computed by sampling values from the distributions determined in step 1. A response typically depends on the inputs and one or more previous responses. This chapter gives a number of simulation examples in queueing, inven-tory, and reliability. The two queueing examples provide a single-server and 23
- 23. 24 Chap. 2 Simulation Examplestwo-server system, respectively. (Chapter 6 provides more insight into queue-ing models.) The ﬁrst inventory example involves a problem that has a closed-form solution; thus the simulation solution can be compared to the mathemat-ical solution. The second inventory example pertains to the classic order-levelmodel. Finally, there is an example that introduces the concept of random normalnumbers and a model for the determinination of lead-time demand.2.1 Simulation of Queueing SystemsA queueing system is described by its calling population, the nature of the ar-rivals, the service mechanism, the system capacity, and the queueing discipline.These attributes of a queueing system are described in detail in Chapter 6. Asimple single-channel queueing system is portrayed in Figure 2.1. Server Waiting line Calling population Figure 2.1 Queueing system. In the single-channel queue, the calling population is inﬁnite; that is, if aunit leaves the calling population and joins the waiting line or enters service,there is no change in the arrival rate of other units that may need service.Arrivals for service occur one at a time in a random fashion; once they join thewaiting line, they are eventually served. In addition, service times are of somerandom length according to a probability distribution which does not changeover time. The system capacity has no limit, meaning that any number of unitscan wait in line. Finally, units are served in the order of their arrival (oftencalled FIFO: ﬁrst in, ﬁrst out) by a single server or channel. Table 2.1 Simulation Table Inputs Response Repetitions xi 1 xi 2 ··· xij ··· xip yi 1 2 3 · · · n
- 24. Sec. 2.1 Simulation of Queueing Systems 25 Arrivals and services are deﬁned by the distribution of the time betweenarrivals and the distribution of service times, respectively. For any simple single-or multi-channel queue, the overall effective arrival rate must be less than thetotal service rate, or the waiting line will grow without bound. When queuesgrow without bound, they are termed “explosive” or unstable. (In some reen-trant queueing networks in which units return a number of times to the sameserver before ﬁnally exiting the system, the condition about arrival rate beingless than service rate may not guarantee stability. See Harrison and Nguyen[1995] for more explanation. Interestingly, this type of instability was noticedﬁrst, not in theory, but in actual manufacturing in semiconductor plants.) Morecomplex situations may occur—for example, arrival rates that are greater thanservice rates for short periods of time, or networks of queues with routing.However, this chapter sticks to the simplest, more basic queues. Prior to introducing several simulations of queueing systems, it is neces-sary to understand the concepts of system state, events, and simulation clock.(These concepts are studied systematically in Chapter 3.) The state of the sys-tem is the number of units in the system and the status of the server, busy oridle. An event is a set of circumstances that cause an instantaneous change inthe state of the system. In a single-channel queueing system there are only twopossible events that can affect the state of the system. They are the entry of aunit into the system (the arrival event) or the completion of service on a unit(the departure event). The queueing system includes the server, the unit beingserviced (if one is being serviced), and units in the queue (if any are waiting).The simulation clock is used to track simulated time. If a unit has just completed service, the simulation proceeds in the mannershown in the ﬂow diagram of Figure 2.2. Note that the server has only twopossible states: it is either busy or idle. Departure event Begin server No Another Yes Remove the waiting unit idle time unit waiting from the queue ? Begin servicing the unit Figure 2.2 Service-just-completed ﬂow diagram. The arrival event occurs when a unit enters the system. The ﬂow diagramfor the arrival event is shown in Figure 2.3. The unit may ﬁnd the server eitheridle or busy; therefore, either the unit begins service immediately, or it enters thequeue for the server. The unit follows the course of action shown in Figure 2.4.
- 25. 26 Chap. 2 Simulation Examples Arrival event No Server Yes busy ? Unit enters Unit enters service queue for service Figure 2.3 Unit-entering-system ﬂow diagram.If the server is busy, the unit enters the queue. If the server is idle and thequeue is empty, the unit begins service. It is not possible for the server to beidle and the queue to be nonempty. Queue status Not empty Empty Server Busy Enter queue Enter queue status Idle Impossible Enter service Figure 2.4 Potential unit actions upon arrival. After the completion of a service the server may become idle or remainbusy with the next unit. The relationship of these two outcomes to the statusof the queue is shown in Figure 2.5. If the queue is not empty, another unitwill enter the server and it will be busy. If the queue is empty, the server willbe idle after a service is completed. These two possibilities are shown as theshaded portions of Figure 2.5. It is impossible for the server to become busy ifthe queue is empty when a service is completed. Similarly, it is impossible forthe server to be idle after a service is completed when the queue is not empty. Queue status Not empty Empty Server Busy Impossible outcomes Idle Impossible Figure 2.5 Server outcomes after service completion. Now, how can the events described above occur in simulated time? Sim-ulations of queueing systems generally require the maintenance of an eventlist for determining what happens next. The event list tracks the future times
- 26. Sec. 2.1 Simulation of Queueing Systems 27at which the different types of events occur. Simulations using event lists aredescribed in Chapter 3. This chapter simpliﬁes the simulation by tracking eachunit explicitly. Simulation clock times for arrivals and departures are computedin a simulation table customized for each problem. In simulation, events usu-ally occur at random times, the randomness imitating uncertainty in real life.For example, it is not known with certainty when the next customer will arriveat a grocery checkout counter, or how long the bank teller will take to completea transaction. In these cases, a statistical model of the data is developed fromeither data collected and analyzed, or subjective estimates and assumptions. The randomness needed to imitate real life is made possible through theuse of “random numbers.” Random numbers are distributed uniformly andindependently on the interval (0, 1). Random digits are uniformly distributedon the set {0, 1, 2, . . . , 9} . Random digits can be used to form random numbersby selecting the proper number of digits for each random number and placinga decimal point to the left of the value selected. The proper number of digitsis dictated by the accuracy of the data being used for input purposes. If theinput distribution has values with two decimal places, two digits are taken froma random-digits table (such as Table A.1) and the decimal point is placed to theleft to form a random number. Random numbers can also be generated in simulation packages and inspreadsheets such as Excel ® . For example, Excel has a macro function calledRAND() that returns a “random” number between 0 and 1. When numbersare generated using a procedure, they are often referred to as pseudo-randomnumbers. Since the method is known, it is always possible to know the sequenceof numbers that will be generated prior to the simulation. The most commonlyused methods for generating random numbers are discussed in Chapter 7. In a single-channel queueing system interarrival times and service timesare generated from the distributions of these random variables. The examplesthat follow show how such times are generated. For simplicity, assume that thetimes between arrivals were generated by rolling a die ﬁve times and recordingthe up face. Table 2.2 contains a set of ﬁve interarrival times generated in thismanner. These ﬁve interarrival times are used to compute the arrival times ofsix customers at the queueing system. Table 2.2 Interarrival and Clock Times Interarrival Arrival Customer Time Time on Clock 1 − 0 2 2 2 3 4 6 4 1 7 5 2 9 6 6 15
- 27. 28 Chap. 2 Simulation Examples Table 2.3 Service Times Service Customer Time 1 2 2 1 3 3 4 2 5 1 6 4 The ﬁrst customer is assumed to arrive at clock time 0. This starts theclock in operation. The second customer arrives two time units later, at a clocktime of 2. The third customer arrives four time units later, at a clock time of 6;and so on. The second time of interest is the service time. Table 2.3 contains servicetimes generated at random from a distribution of service times. The only possi-ble service times are one, two, three, and four time units. Assuming that all fourvalues are equally likely to occur, these values could have been generated byplacing the numbers one through four on chips and drawing the chips from a hatwith replacement, being sure to record the numbers selected. Now, the inter-arrival times and service times must be meshed to simulate the single-channelqueueing system. As shown in Table 2.4, the ﬁrst customer arrives at clocktime 0 and immediately begins service, which requires two minutes. Service iscompleted at clock time 2. The second customer arrives at clock time 2 and isﬁnished at clock time 3. Note that the fourth customer arrived at clock time 7,but service could not begin until clock time 9. This occurred because customer3 did not ﬁnish service until clock time 9. Table 2.4 was designed speciﬁcally for a single-channel queue which servescustomers on a ﬁrst-in, ﬁrst-out (FIFO) basis. It keeps track of the clock time Table 2.4 Simulation Table Emphasizing Clock Times A B C D E Arrival Time Service Service Time Service Customer Time Begins Time Ends Number (Clock) (Clock) (Duration) (Clock) 1 0 0 2 2 2 2 2 1 3 3 6 6 3 9 4 7 9 2 11 5 9 11 1 12 6 15 15 4 19
- 28. Sec. 2.1 Simulation of Queueing Systems 29 Table 2.5 Chronological Ordering of Events Customer Clock Event Type Number Time Arrival 1 0 Departure 1 2 Arrival 2 2 Departure 2 3 Arrival 3 6 Arrival 4 7 Departure 3 9 Arrival 5 9 Departure 4 11 Departure 5 12 Arrival 6 15 Departure 6 19at which each event occurs. The second column of Table 2.4 records the clocktime of each arrival event, while the last column records the clock time of eachdeparture event. The occurrence of the two types of events in chronologicalorder is shown in Table 2.5 and Figure 2.6. Number of customers in the systtem 2 4 5 1 1 2 3 4 5 6 0 4 8 12 16 20 Clock time Figure 2.6 Number of customers in the system. It should be noted that Table 2.5 is ordered by clock time, in which casethe events may or may not be ordered by customer number. The chronologicalordering of events is the basis of the approach to discrete-event simulationdescribed in Chapter 3. Figure 2.6 depicts the number of customers in the system at the variousclock times. It is a visual image of the event listing of Table 2.5. Customer 1
- 29. 30 Chap. 2 Simulation Examples Table 2.6 Distribution of Time Between Arrivals Time between Arrivals Cumulative Random-Digit (Minutes) Probability Probability Assignment 1 0.125 0.125 001 − 125 2 0.125 0.250 126 − 250 3 0.125 0.375 251 − 375 4 0.125 0.500 376 − 500 5 0.125 0.625 501 − 625 6 0.125 0.750 626 − 750 7 0.125 0.875 751 − 875 8 0.125 1.000 876 − 000is in the system from clock time 0 to clock time 2. Customer 2 arrives at clocktime 2 and departs at clock time 3. No customers are in the system from clocktime 3 to clock time 6. During some time periods two customers are in thesystem, such as at clock time 8, when both customers 3 and 4 are in the system.Also, there are times when events occur simultaneously, such as at clock time9, when customer 5 arrives and customer 3 departs. Example 2.1 follows the logic described above while keeping track ofa number of attributes of the system. Example 2.2 is concerned with a two-channel queueing system. The ﬂow diagrams for a multichannel queueingsystem are slightly different from those for a single-channel system. The devel-opment and interpretation of these ﬂow diagrams is left as an exercise for thereader.EXAMPLE 2.1 Single-Channel QueueA small grocery store has only one checkout counter. Customers arrive at thischeckout counter at random from 1 to 8 minutes apart. Each possible value ofinterarrival time has the same probability of occurrence, as shown in Table 2.6.The service times vary from 1 to 6 minutes with the probabilities shown inTable 2.7. The problem is to analyze the system by simulating the arrival andservice of 20 customers. Table 2.7 Service-Time Distribution Service Time Cumulative Random-Digit (Minutes) Probability Probability Assignment 1 0.10 0.10 01 − 10 2 0.20 0.30 11 − 30 3 0.30 0.60 31 − 60 4 0.25 0.85 61 − 85 5 0.10 0.95 86 − 95 6 0.05 1.00 96 − 00
- 30. Sec. 2.1 Simulation of Queueing Systems 31 In actuality, 20 customers is too small a sample size to allow drawing anyreliable conclusions. The accuracy of the results is enhanced by increasing thesample size, as discussed in Chapter 11. However, the purpose of the exerciseis to demonstrate how simple simulations can be carried out in a table, eithermanually or with a spreadsheet, not to recommend changes in the grocery store.A second issue, discussed thoroughly in Chapter 11, is that of initial conditions.A simulation of a grocery store that starts with an empty system is not realisticunless the intention is to model the system from startup or to model until steady-state operation is reached. Here, to keep things simple, starting conditions andconcerns are overlooked. A set of uniformly distributed random numbers is needed to generatethe arrivals at the checkout counter. Random numbers have the followingproperties: 1. The set of random numbers is uniformly distributed between 0 and 1. 2. Successive random numbers are independent.With tabular simulations, random digits such as those found in Table A.1 inthe Appendix can be converted to random numbers. If using a spreadsheet,most have a built-in random-number generator such as RAND() in Excel. Theexample in the text uses random digits from Table A.1; in some of the exercisesthe student is asked to use a spreadsheet. Random digits are converted to random numbers by placing a decimalpoint appropriately. Since the probabilities in Table 2.6 are accurate to 3 signif-icant digits, three-place random numbers will sufﬁce. It is necessary to list only19 random numbers to generate times between arrivals. Why only 19 numbers?The ﬁrst arrival is assumed to occur at time 0, so only 19 more arrivals need tobe generated to end up with 20 customers. Similarly, for Table 2.7, two-placerandom numbers will sufﬁce. The rightmost two columns of Tables 2.6 and 2.7 are used to generate ran-dom arrivals and random service times. The third column in each table containsthe cumulative probability for the distribution. The rightmost column containsthe random digit-assignment. In Table 2.6, the ﬁrst random-digit assignmentis 001–125. There are 1000 three-digit values possible (001 through 000). Theprobability of a time-between-arrivals of 1 minute is 0.125, and 125 of the 1000random-digit values are assigned to such an occurrence. Times between ar-rivals for 19 customers are generated by listing 19 three-digit values from TableA.1 and comparing them to the random-digit assignment of Table 2.6. For manual simulations, it is good practice to start at a random position inthe random-digit table and proceed in a systematic direction, never re-using thesame stream of digits in a given problem. If the same pattern is used repeatedly,bias could result, because the same event pattern would be generated. In Excel,each time the random function RAND() is evaluated, it returns a new randomvalue. The time-between-arrival determination is shown in Table 2.8. Note thatthe ﬁrst random digits are 913. To obtain the corresponding time between
- 31. 32 Chap. 2 Simulation Examples Table 2.8 Time-Between-Arrivals Determination Time between Time between Random Arrivals Random Arrivals Customer Digits (Minutes) Customer Digits (Minutes) 1 − − 11 109 1 2 913 8 12 093 1 3 727 6 13 607 5 4 015 1 14 738 6 5 948 8 15 359 3 6 309 3 16 888 8 7 922 8 17 106 1 8 753 7 18 212 2 9 235 2 19 493 4 10 302 3 20 535 5arrivals, enter the fourth column of Table 2.6 and read 8 minutes from the ﬁrstcolumn of the table. Alternatively, we see that 0.913 is between the cumulativeprobabilities 0.876 and 1.000, again resulting in 8 minutes as the generated time. Service times for all 20 customers are shown in Table 2.9. These servicetimes were generated based on the methodology described above, together withthe aid of Table 2.7. The ﬁrst customer’s service time is 4 minutes because therandom digits 84 fall in the bracket 61– 85, or alternatively because the derivedrandom number 0.84 falls between the cumulative probabilities 0.61 and 0.85. Table 2.9 Service Times Generated Service Service Random Time Random Time Customer Digits (Minutes) Customer Digits (Minutes) 1 84 4 11 32 3 2 10 1 12 94 5 3 74 4 13 79 4 4 53 3 14 05 1 5 17 2 15 79 5 6 79 4 16 84 4 7 91 5 17 52 3 8 67 4 18 55 3 9 89 5 19 30 2 10 38 3 20 50 3
- 32. Sec. 2.1 Simulation of Queueing Systems 33 The essence of a manual simulation is the simulation table. These ta-bles are designed for the problem at hand, with columns added to answer thequestions posed. The simulation table for the single-channel queue, shown inTable 2.10, is an extension of the type of table already seen in Table 2.4. Theﬁrst step is to initialize the table by ﬁlling in cells for the ﬁrst customer. Theﬁrst customer is assumed to arrive at time 0. Service begins immediately andﬁnishes at time 4. The customer was in the system for 4 minutes. After theﬁrst customer, subsequent rows in the table are based on the random numbersfor interarrival time and service time and the completion time of the previouscustomer. For example, the second customer arrives at time 8. Thus, the server(checkout person) was idle for 4 minutes. Skipping down to the fourth cus-tomer, it is seen that this customer arrived at time 15 but could not be serveduntil time 18. This customer had to wait in the queue for 3 minutes. This pro-cess continues for all 20 customers. Extra columns have been added to collectstatistical measures of performance such as each customer’s time in the systemand the server’s idle time (if any) since the previous customer departed. Inorder to compute summary statistics, totals are formed as shown for servicetimes, time customers spend in the system, idle time of the server, and time thecustomers wait in the queue. In the exercises, the reader is asked to implement the simulation table forthe single-channel queue, Table 2.10, in Excel or another spreadsheet. Herewe give some hints when using Excel. The key column to compute is columnE, the “Time Service Begins”. (We leave for the reader the question of how tocompute the random interarrival and service times, but suggest the RAND()random number generator or other built-in distribution in Excel.) First, thereader may ﬁll in row 1 for the ﬁrst customer manually. The values for theremaining customers must use macro formulas (which begin with an equalssign in Excel). Note that a customer begins service at the later of its ownarrival time (column C) or the completion time (column G) of the previouscustomer. Therefore, for customer 10, service begins at E10 = MAX(C10,G9), where MAX() is the Excel macro function that returns the maximumvalue in a range or list of cells. This easily generalizes to other customers.(The statistical measures in columns H and I are easily computed by simplesubtractions–also left for the reader.) A ﬁnal hint on how to verify your spread-sheet model: instead of using a random function for arrivals and service times,type in the actual values given in Table 2.10 in columns B and D. If your for-mulas are correct, the spreadsheet should duplicate Table 2.10 exactly. Afterveriﬁcation, replace the numbers by an appropriate random function. Thenon each recalculation of the spreadsheet (function key F9 in Excel), it willgenerate new random numbers and you will get a new ‘’run” of the simula-tion. Some of the ﬁndings from the simulation in Table 2.10 are as follows:
- 33. 34 Chap. 2 Simulation Examples 1. The average waiting time for a customer is 2.8 minutes. This is determined in the following manner: average waiting time total time customers wait in queue (minutes) = (minutes) total numbers of customers 56 = = 2.8 minutes 20 2. The probability that a customer has to wait in the queue is 0.65. This is determined in the following manner: number of customers who wait probability (wait) = total number of customers 13 = = 0.65 20 3. The fraction of idle time of the server is 0.21. This is determined in the following manner: probability of idle total idle time of server (minutes) = server total run time of simulation (minutes) 18 = = 0.21 86 The probability of the server being busy is the complement of 0.21, or 0.79. 4. The average service time is 3.4 minutes, determined as follows: average service time total service time (minutes) = (minutes) total number of customers 68 = = 3.4 minutes 20 This result can be compared with the expected service time by ﬁnding the mean of the service-time distribution using the equation ∞ E(S) = sp(s) s=0 Applying the expected-value equation to the distribution in Table 2.7 gives an expected service time of: = 1(0.10) + 2(0.20) + 3(0.30) + 4(0.25) + 5(0.10) + 6(0.05) = 3.2 minutes The expected service time is slightly lower than the average service time in the simulation. The longer the simulation, the closer the average will be to E(S) .
- 34. Table 2.10 Simulation Table for Queueing Problem A B C D E F G H I Time Since Service Time Time Customer Time Time Customer Idle Time Last Arrival Arrival Time Service Waits in Queue Service Spends in System of Server Customer (Minutes) Time (Minutes) Begins (Minutes) Ends (Minutes) (Minutes) 1 − 0 4 0 0 4 4 0 2 8 8 1 8 0 9 1 4 3 6 14 4 14 0 18 4 5 4 1 15 3 18 3 21 6 0 5 8 23 2 23 0 25 2 2 6 3 26 4 26 0 30 4 1 7 8 34 5 34 0 39 5 4 8 7 41 4 41 0 45 4 2 9 2 43 5 45 2 50 7 0 10 3 46 3 50 4 53 7 0 Sec. 2.1 11 1 47 3 53 6 56 9 0 12 1 48 5 56 8 61 13 0 13 5 53 4 61 8 65 12 0 14 6 59 1 65 6 66 7 0 Simulation of Queueing Systems 15 3 62 5 66 4 71 9 0 16 8 70 4 71 1 75 5 0 17 1 71 3 75 4 78 7 0 18 2 73 3 78 5 81 8 0 19 4 77 2 81 4 83 6 0 20 5 82 3 83 1 86 4 0 68 56 124 18 35
- 35. 36 Chap. 2 Simulation Examples 5. The average time between arrivals is 4.3 minutes. This is determined in the following manner: sum of all times average time between between arrivals (minutes) = arrivals (minutes) number of arrivals −1 82 = = 4.3 minutes 19 One is subtracted from the denominator because the ﬁrst arrival is as- sumed to occur at time 0. This result can be compared to the expected time between arrivals by ﬁnding the mean of the discrete uniform dis- tribution whose endpoints are a = 1 and b = 8. The mean is given by a+b 1+8 E(A) = = = 4.5 minutes 2 2 The expected time between arrivals is slightly higher than the average. However, as the simulation becomes longer, the average value of the time between arrivals will approach the theoretical mean, E(A) . 6. The average waiting time of those who wait is 4.3 minutes. This is deter- mined in the following manner: Average waiting time of total time customers wait in queue (minutes) = those who wait (minutes) total number of customers who wait 56 = = 4.3 minutes 13 7. The average time a customer spends in the system is 6.2 minutes. This can be determined in two ways. First, the computation can be achieved by the following relationship: average time customer total time customers spend in the system (minutes) spends in the system = total number of customers (minutes) 124 = = 6.2 minutes 20 The second way of computing this same result is to realize that the fol- lowing relationship must hold: average time average time average time customer spends customer spends customer spends in the system = waiting in the + in service (minutes) queue (minutes) (minutes)
- 36. Sec. 2.1 Simulation of Queueing Systems 37From ﬁndings 1 and 4 this results in: Average time customer spends in the system (minutes) = 2.8 + 3.4 = 6.2 minutes A decision maker would be interested in results of this type, but a longersimulation would increase the accuracy of the ﬁndings. However, some sub-jective inferences can be drawn at this point. Most customers have to wait;however, the average waiting time is not excessive. The server does not havean undue amount of idle time. Objective statements about the results woulddepend on balancing the cost of waiting with the cost of additional servers.(Simulations requiring variations of the arrival and service distributions, aswell as implementation in a spreadsheet, are presented as exercises for thereader.) ᭡EXAMPLE 2.2 The Able Baker Carhop ProblemThis example illustrates the simulation procedure when there is more than oneservice channel. Consider a drive-in restaurant where carhops take orders andbring food to the car. Cars arrive in the manner shown in Table 2.11. There aretwo carhops—Able and Baker. Able is better able to do the job and works a bitfaster than Baker. The distribution of their service times is shown in Tables 2.12and 2.13. Table 2.11 Interarrival Distribution of Cars Time between Arrivals Cumulative Random-Digit (Minutes) Probability Probability Assignment 1 0.25 0.25 01 − 25 2 0.40 0.65 26 − 65 3 0.20 0.85 66 − 85 4 0.15 1.00 86 − 00 The simulation proceeds in a manner similar to Example 2.1, except thatit is more complex because of the two servers. A simplifying rule is that Ablegets the customer if both carhops are idle. Perhaps, Able has seniority. (The Table 2.12 Service Distribution of Able Service Time Cumulative Random-Digit (Minutes) Probability Probability Assignment 2 0.30 0.30 01 − 30 3 0.28 0.58 31 − 58 4 0.25 0.83 59 − 83 5 0.17 1.00 84 − 00
- 37. 38 Chap. 2 Simulation Examples Table 2.13 Service Distribution of Baker Service Time Cumulative Random-Digit (Minutes) Probability Probability Assignment 3 0.35 0.35 01 − 35 4 0.25 0.60 36 − 60 5 0.20 0.80 61 − 80 6 0.20 1.00 81 − 00solution would be different if the decision were made at random or by any otherrule.) The problem is to ﬁnd how well the current arrangement is working.To estimate the system measures of performance, a simulation of 1 hour ofoperation is made. A longer simulation would yield more reliable results, butfor purposes of illustration a l-hour period has been selected. The simulation proceeds in a manner similar to Example 2.1. Here thereare more events: a customer arrives, a customer begins service from Able, acustomer completes service from Able, a customer begins service from Baker,and a customer completes service from Baker. The simulation table is shownin Table 2.14. In later exercises, the reader is asked to implement the simulation table,Table 2.14, in a spreadsheet such as Excel. Here we provide a few hints (andrules!). The row for the ﬁrst customer is ﬁlled in manually, with the random-number function RAND() or another random function replacing the randomdigits. After the ﬁrst customer, the cells for the other customers must be basedon logic and formulas. For example, the “Clock Time of Arrival” (column D)in the row for the second customer is computed as follows:D2 = D1 + C2using notation similar to that used by most spreadsheets. (C2 is the time be-tween arrivals 1 and 2.) This formula is easily generalized for any customer. The logic to compute who gets a given customer, and when that servicebegins, is more complex. Here we give a hint using the Excel macro functionIF(), which returns one of two values depending on whether a condition is trueor false. [The syntax is IF( condition, value if true, value if false).] The logicgoes as follows when a customer arrives: If the customer ﬁnds Able idle, thecustomer begins service immediately with Able. If Able is not idle but Baker is,then the customer begins service immediately with Baker. If both are busy, the
- 38. Sec. 2.1 Simulation of Queueing Systems 39customer begins service with the ﬁrst server to become free. The logic requiresthat we compute when Able and Baker will become free, for which we use thebuilt-in Excel function for maximum over a range, MAX(). For example, forcustomer 10, Able will become free at MAX(H$1:H9), since service comple-tion time is in column H and we need to look at customers 1–9. (Using H$1instead of H1 works better with Excel when formulas are copied. The dollarsign indicates an absolute reference versus a relative reference to a cell.) Theresulting formula to compute whether and when Able serves customer 10 is asfollows:F10 = IF(D10>MAX(H$1:H9),D10, IF(D10>MAX(K$1:K9),’’’’, MIN(MAX(H$1:H9),MAX(K$1:K9))))In this formula, note that if the ﬁrst condition (Able idle when customer 10arrives) is true, then the customer begins immediately at the arrival time inD10. Otherwise, a second IF() function is evaluated, which says if Baker isidle, put nothing (“”) in the cell. Otherwise, the function returns the time thatAble or Baker becomes idle, whichever is ﬁrst [the minimum or MIN() of theirrespective completion times]. A similar formula applies to cell I10 for “TimeService Begins” for Baker. For service times for Able, you could use anotherIF() function to make the cell blank or have a value:G10 = IF(F10 > 0,new service time, "")H10 = IF(F10 > 0, F10+G10, "")and similarly for Baker. With these hints, we leave the formula fornew service time as well as the remainder of the solution to the reader. The analysis of Table 2.14 results in the following: 1. Over the 62-minute period Able was busy 90% of the time. 2. Baker was busy only 69% of the time. The seniority rule keeps Baker less busy (and gives Able more tips). 3. Nine of the 26 arrivals (about 35%) had to wait. The average waiting time for all customers was only about 0.42 minute (25 seconds), which is very small. 4. Those nine who did have to wait only waited an average of 1.22 minutes, which is quite low. 5. In summary, this system seems well balanced. One server cannot handle all the diners, and three servers would probably be too many. Adding an additional server would surely reduce the waiting time to nearly zero. However, the cost of waiting would have to be quite high to justify an additional server. ᭡

No public clipboards found for this slide

Be the first to comment