Successfully reported this slideshow.
Teijin Aramid Engineering with aramid fibers Dynamic loading effects  on aramid fibers Matthijs van Leeuwen Business Devel...
Teijin Aramid BV - Applications Automotive Telecom Protection Construction Leisure Aerospace Oil&Gas
Content <ul><li>Measuring material properties </li></ul><ul><li>Dynamic loading </li></ul><ul><ul><li>Changing properties ...
<ul><li>Standard property determination: </li></ul><ul><li>Used for quality control & property datasheets </li></ul><ul><u...
Measuring material properties (2) Strength EAB Modulus calculated 300-400mN/tex Specific conditions:  Twistlevel, temperat...
<ul><li>Non-standard properties: </li></ul><ul><li>Required for engineering purposes </li></ul><ul><li>Different condition...
Measuring material properties (4) The modulus can be measured according to the standard method at different temperatures. ...
<ul><li>Official material data based on ‘virgin’ yarn: </li></ul><ul><li>Strength / Modulus / EAB / etc. </li></ul><ul><li...
<ul><li>Dynamic modulus determination: </li></ul><ul><li>Material type   flat / twisted yarn + type  </li></ul><ul><li>Co...
Dynamic loading – Changing properties (3) Test setup (load controlled): cycling at 20°C  amplitude 2,5% of BS 5-40% & 5-80...
Dynamic loading – Changing properties (4a) <ul><li>yarn 1680dtex Z80 (standard yarn) </li></ul><ul><li>2. 3-ply cord  </li...
Dynamic loading – Changing properties (4b) Modulus is slope of Force-elongation curve. Static modulus Dynamic modulus
Dynamic loading – Changing properties (5) Standard Modulus = 72 GPa  EAB = 3,6% ~0,4% deformation due to 40% load ~0,4% de...
Dynamic loading – Changing properties (6) Standard Modulus = 58 GPa (-20%)  EAB = 4,5% (+24%) ~0,5% deformation due to 40%...
Dynamic loading – Changing properties (7) Standard Modulus = 11 GPa EAB = 14% ~1,9% deformation due to 40% load ~1,6% defo...
Dynamic loading – Changing properties (8) yarn 3-ply cord Static 3-ply cord yarn Dynamic
Dynamic loading – Changing properties (9) PET-HT PET-HT Twaron 2300 Twaron 2300 Static Dynamic
Dynamic loading – Changing properties (9) Dynamic Static PET-HT PET-HT Twaron 2300 Twaron 2300 Twaron 2300 PET-HT
Dynamic loading – Mooring (1) Dynamic modulus Static modulus 3-ply cord 3-ply cord yarn yarn * 60% according to API x 75% ...
Dynamic loading – Mooring (2) Twaron 2300 PET-HT * 60% according to API x 75% rope efficiency 134 GPa (1.6x static) 25 GPa...
Dynamic loading – Mooring (3) Normalised dynamic modulus  Kr D  is rope stiffness: Highest dynamic stiffness: At max. allo...
Dynamic loading – Mooring (4) Twaron 2300 PET-HT * 60% according to API x 75% rope efficiency Kr D = 43 Kr D = 25 ‘ Normal...
Dynamic loading – Mooring (5) <ul><li>Normalised dynamic modulus Kr D  is material specific: </li></ul><ul><li>PET-HT    ...
Dynamic loading – Mooring (6) <ul><li>PET is applicable for any water depth, but in deeper water: </li></ul><ul><li>Stiffe...
<ul><li>Tension-Tension fatigue modelling: </li></ul><ul><li>Many variables in tension-tension testing: </li></ul><ul><li>...
<ul><li>Tension-Tension fatigue science: </li></ul><ul><li>Steel wire can be engineered: </li></ul><ul><ul><li>Feyrer form...
Dynamic loading – T-T (3)
<ul><li>Tension-Tension engineering: </li></ul><ul><li>In some applications, the performance for aramids is easy to predic...
Conclusions Aramid fibers offer great advantages.  Dynamic properties are known and can be used for engineering to estimat...
Safety – Reliability – Confidence www.teijinaramid.com Matthijs van Leeuwen Business Development Manager Linear Tension Me...
Measuring material properties (4) 20°C 50°C 95°C Long-term load ability can be modeled for Twaron, which is useful for eng...
Dynamic loading – Changing properties (9) Dynamic modulus Aramids show a constant stiffness at a certain elongation, even ...
Dynamic loading – Changing properties (9) Dynamic modulus Once yarn/rope is loaded at working level, the dynamic modulus w...
Dynamic loading – Changing properties (9) Dynamic Static Twaron 2300 Twaron 2300 PET-HT PET-HT
Dynamic loading – T-T (5) – Twaron Maximum load (LTBL line) High freq Low freq Damaging / abrasion effect of going from ve...
Dynamic loading – T-T (6)    Ferris wheel ~2 cycles/hr ~20,000 cycles/yr Tension between  50% and 25% of MBL Steel wire h...
<ul><li>Current design with steel: </li></ul><ul><li>Steel: Average is 37,5% MBL +/- 12,5% dynamic load </li></ul><ul><ul>...
Dynamic loading – T-T (8) – Steel vs Twaron Maximum load (LTBL line)    Static loading 100k cycles 10M cycles Great wheel...
Upcoming SlideShare
Loading in …5
×

MTS rope workshop 2011 - Teijin presentation

1,827 views

Published on

Sheet 1-30 is the actual presentation.
Sheet 23 and 24 contain the core message of the presentation.

Sheet 31-38 provide some additional information and sheets for the people that really want to get every detail.

Published in: Technology, Business
  • Be the first to comment

MTS rope workshop 2011 - Teijin presentation

  1. 1. Teijin Aramid Engineering with aramid fibers Dynamic loading effects on aramid fibers Matthijs van Leeuwen Business Development Manager Linear Tension Members, Oil & Gas MTS IRTW 2011, College Station 23 rd March, 2011
  2. 2. Teijin Aramid BV - Applications Automotive Telecom Protection Construction Leisure Aerospace Oil&Gas
  3. 3. Content <ul><li>Measuring material properties </li></ul><ul><li>Dynamic loading </li></ul><ul><ul><li>Changing properties </li></ul></ul><ul><ul><li>Mooring </li></ul></ul><ul><li>T-T fatigue vs steel wire </li></ul><ul><li>Conclusions </li></ul>
  4. 4. <ul><li>Standard property determination: </li></ul><ul><li>Used for quality control & property datasheets </li></ul><ul><ul><li>Strength (force at break) </li></ul></ul><ul><ul><li>Modulus (stiffness between certain stress levels) </li></ul></ul><ul><ul><li>EAB (Elongation at break) </li></ul></ul><ul><ul><li>FASE (Force at specified elongation) </li></ul></ul><ul><ul><li>Miscellaneous (moisture/finish content, yarn count etc) </li></ul></ul><ul><li> Properties of ‘as produced’ material </li></ul><ul><li> According to standards (ASTM, BISFA, company standard) </li></ul>Measuring material properties (1)
  5. 5. Measuring material properties (2) Strength EAB Modulus calculated 300-400mN/tex Specific conditions: Twistlevel, temperature, moisture level, yarn length, clamp type, speed Standard yarn test according to ASTM D885
  6. 6. <ul><li>Non-standard properties: </li></ul><ul><li>Required for engineering purposes </li></ul><ul><li>Different conditions  High / low temp, rate, time </li></ul><ul><li>Lateral compression  ‘pin-loop’ strength </li></ul><ul><li>Dynamic properties  creep, modulus, hysteresis </li></ul><ul><li>Failure modes  Time to rupture, tension-tension, chemicals, etc </li></ul>Measuring material properties (3)
  7. 7. Measuring material properties (4) The modulus can be measured according to the standard method at different temperatures. standard temperature
  8. 8. <ul><li>Official material data based on ‘virgin’ yarn: </li></ul><ul><li>Strength / Modulus / EAB / etc. </li></ul><ul><li>But, do materials keep these values in use? </li></ul><ul><li>Not all; For example, the modulus changes! </li></ul><ul><li>Modulus changes during and after loading (‘work hardening’) </li></ul><ul><li>So, how should we engineer? </li></ul><ul><li>Modulus can be predicted, and verified by testing </li></ul><ul><li>Depending on load history, time and material type </li></ul>Dynamic loading – Changing properties (1)
  9. 9. <ul><li>Dynamic modulus determination: </li></ul><ul><li>Material type  flat / twisted yarn + type </li></ul><ul><li>Construction  yarn, cord, braided / laid / parallel rope </li></ul><ul><li>Temperature  -xx0 ° C to +xx0 ° C </li></ul><ul><li> Many ways to test!! </li></ul><ul><li>Various calculation methods to present modulus :  Youngs, chord (ASTM), secant, tangent </li></ul><ul><li> secant/tangent most useful for static modulus </li></ul><ul><li> dynamic modulus slope of loop </li></ul>Dynamic loading – Changing properties (2)
  10. 10. Dynamic loading – Changing properties (3) Test setup (load controlled): cycling at 20°C amplitude 2,5% of BS 5-40% & 5-80% in 2,5% increm.  Measuring dynamic modulus (‘storm stiffness’)
  11. 11. Dynamic loading – Changing properties (4a) <ul><li>yarn 1680dtex Z80 (standard yarn) </li></ul><ul><li>2. 3-ply cord </li></ul><ul><li>(similar to mooring rope design) </li></ul><ul><li>BS = 100% of yarn strength </li></ul><ul><li>3. 3-ply cord PET-HT </li></ul>Break test Dynamic test
  12. 12. Dynamic loading – Changing properties (4b) Modulus is slope of Force-elongation curve. Static modulus Dynamic modulus
  13. 13. Dynamic loading – Changing properties (5) Standard Modulus = 72 GPa EAB = 3,6% ~0,4% deformation due to 40% load ~0,4% deformation due to 80% load ~0,8% total deformation due to 80% load
  14. 14. Dynamic loading – Changing properties (6) Standard Modulus = 58 GPa (-20%) EAB = 4,5% (+24%) ~0,5% deformation due to 40% load ~0,5% deformation due to 80% load ~1,0% total deformation due to 80% load (+25%)
  15. 15. Dynamic loading – Changing properties (7) Standard Modulus = 11 GPa EAB = 14% ~1,9% deformation due to 40% load ~1,6% deformation due to 80% load ~3,5% total deformation due to 80% load
  16. 16. Dynamic loading – Changing properties (8) yarn 3-ply cord Static 3-ply cord yarn Dynamic
  17. 17. Dynamic loading – Changing properties (9) PET-HT PET-HT Twaron 2300 Twaron 2300 Static Dynamic
  18. 18. Dynamic loading – Changing properties (9) Dynamic Static PET-HT PET-HT Twaron 2300 Twaron 2300 Twaron 2300 PET-HT
  19. 19. Dynamic loading – Mooring (1) Dynamic modulus Static modulus 3-ply cord 3-ply cord yarn yarn * 60% according to API x 75% rope efficiency 134 GPa (-6%) 83 GPa (-12%) @ 45% MBL * 142 GPa 93 GPa
  20. 20. Dynamic loading – Mooring (2) Twaron 2300 PET-HT * 60% according to API x 75% rope efficiency 134 GPa (1.6x static) 25 GPa (2.3x static) Dynamic modulus @ 45% MBL * 83 GPa 11 GPa Static modulus
  21. 21. Dynamic loading – Mooring (3) Normalised dynamic modulus Kr D is rope stiffness: Highest dynamic stiffness: At max. allowed load level (API  60% MBL). Elongation Δ L is the 2x amplitude of the waves. The stiffness Kr D is therefore proportional to a minimum applicable length of a mooring line: This means that Kr D,PET : Kr D,Aramid = L min,PET : L min,Aramid 
  22. 22. Dynamic loading – Mooring (4) Twaron 2300 PET-HT * 60% according to API x 75% rope efficiency Kr D = 43 Kr D = 25 ‘ Normalised storm stiffness’ @45% MBL *
  23. 23. Dynamic loading – Mooring (5) <ul><li>Normalised dynamic modulus Kr D is material specific: </li></ul><ul><li>PET-HT  Kr D = 25 (@ 45% MBL) </li></ul><ul><li>Twaron 2300  Kr D = 43 (@ 45% MBL) </li></ul><ul><li>In practice Kr D is higher due to lower MBL efficiency of aramid ropes: </li></ul><ul><li> In practice a Twaron 2300 rope is ~2x stiffer than a PET-HT rope </li></ul><ul><li>Because Kr D is only related to the minimal applicable depth: </li></ul><ul><li>The minimal length/depths could be: </li></ul><ul><li>PET-HT  500 m (assumed minimal depth) </li></ul><ul><li>Twaron 2300  1000 m (derived from PET assumption) </li></ul>Ratio is 1: 1,7
  24. 24. Dynamic loading – Mooring (6) <ul><li>PET is applicable for any water depth, but in deeper water: </li></ul><ul><li>Stiffer lines (>E·A) needed to maintain offset  Larger diameter (more Area) </li></ul><ul><li> Increased transport & installation costs + larger connectors etc. </li></ul><ul><li>So, aramid mooring lines offer advantages in very deep water: </li></ul><ul><li>As part of a line to obtain desired stiffness at limited PET rope diameter </li></ul><ul><li>To get thinner lines  Lower transport and installation costs </li></ul><ul><li>For its advantage of less bedding-in / creep of ropes </li></ul><ul><li>The question is : When are aramids more cost effective than PET? ! </li></ul>skip
  25. 25. <ul><li>Tension-Tension fatigue modelling: </li></ul><ul><li>Many variables in tension-tension testing: </li></ul><ul><li>Material type  flat / twisted yarn + type </li></ul><ul><li>Construction  yarn, greige, cord, braided / laid rope, cable </li></ul><ul><li>Pattern  block / sinus / triangle / other </li></ul><ul><li>Frequency  0,00x Hz – x0 Hz </li></ul><ul><li>Level  0% - xx% (maximum / mean / minimum) </li></ul><ul><li>Amplitude  0,x% to x0% </li></ul><ul><li>Medium  water, air, other </li></ul><ul><li>Billions of test possibilities </li></ul>Dynamic loading – T-T (1)
  26. 26. <ul><li>Tension-Tension fatigue science: </li></ul><ul><li>Steel wire can be engineered: </li></ul><ul><ul><li>Feyrer formula: </li></ul></ul><ul><ul><li>Very useful; but do aramids follow the same mechanism? </li></ul></ul><ul><ul><li>No, but we can use the same methodology </li></ul></ul><ul><ul><ul><li>Goodman / Newman plot </li></ul></ul></ul>Dynamic loading – T-T (2)
  27. 27. Dynamic loading – T-T (3)
  28. 28. <ul><li>Tension-Tension engineering: </li></ul><ul><li>In some applications, the performance for aramids is easy to predict </li></ul><ul><li> Known loading pattern / temperature </li></ul><ul><li> Known number of cycles </li></ul><ul><li>Teijin is building knowledge to support engineering </li></ul><ul><li> At this moment lack of data to compare fatigue of steel and aramids </li></ul>Dynamic loading – T-T (4) >>
  29. 29. Conclusions Aramid fibers offer great advantages. Dynamic properties are known and can be used for engineering to estimate value in use. Aramids offer cost reduction in ultra deepwater mooring applications due to smaller dimensions and lower installation costs. Aramid ropes are 2x stiffer than PET ropes. The worlds of synthetics and steel are still way apart, but it is time for change! Let’s start talking the same language.
  30. 30. Safety – Reliability – Confidence www.teijinaramid.com Matthijs van Leeuwen Business Development Manager Linear Tension Members, Oil & Gas [email_address] Teijin Aramid BV Arnhem The Netherlands <ul><li>Acknowledgements: </li></ul><ul><li>Bertil van Berkel </li></ul><ul><li>Frits Elkink </li></ul><ul><li>Otto Grabandt </li></ul><ul><li>Ed Steyn </li></ul><ul><li>Who all contributed to the results </li></ul>
  31. 31. Measuring material properties (4) 20°C 50°C 95°C Long-term load ability can be modeled for Twaron, which is useful for engineering purposes, studying static failure modes. 140°C
  32. 32. Dynamic loading – Changing properties (9) Dynamic modulus Aramids show a constant stiffness at a certain elongation, even after loading. Elongation at zero load changes.
  33. 33. Dynamic loading – Changing properties (9) Dynamic modulus Once yarn/rope is loaded at working level, the dynamic modulus will not change up to working load until higher loads are applied.
  34. 34. Dynamic loading – Changing properties (9) Dynamic Static Twaron 2300 Twaron 2300 PET-HT PET-HT
  35. 35. Dynamic loading – T-T (5) – Twaron Maximum load (LTBL line) High freq Low freq Damaging / abrasion effect of going from very high to very low load Miner’s rule Minimum load Maximum load
  36. 36. Dynamic loading – T-T (6)  Ferris wheel ~2 cycles/hr ~20,000 cycles/yr Tension between 50% and 25% of MBL Steel wire has design life of ~10 years  What about Twaron?
  37. 37. <ul><li>Current design with steel: </li></ul><ul><li>Steel: Average is 37,5% MBL +/- 12,5% dynamic load </li></ul><ul><ul><li>Failure is determined by number of cycles at certain load </li></ul></ul><ul><ul><li>~100,000 cycles at 37,5% load +/- 12,5% (~10 years @ 2 cycl/hr) </li></ul></ul><ul><li>Can Twaron be used (in parallel construction)? </li></ul><ul><ul><li>50% constant load  ~1000 years @ 30°C (Highest load is important) </li></ul></ul><ul><ul><li>Cycling between 25% and 50% load results in ~6000 years lifetime!! </li></ul></ul><ul><ul><ul><li> 1 million cycles at 25-50% MBL (100 years) seems very safe! </li></ul></ul></ul><ul><li> YES, Twaron would easily outperform the steel wire! </li></ul>Dynamic loading – T-T (7)  Ferris wheel
  38. 38. Dynamic loading – T-T (8) – Steel vs Twaron Maximum load (LTBL line)  Static loading 100k cycles 10M cycles Great wheel case (~1 cycles / hr) steel Twaron ® * The given numbers are only indicative, but based on reality Number of cycles with average load &12,5% amplitude * steel Number of cycles with upper load at 50% MBL * Twaron ® Lower load at 25% MBL *

×