Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this document? Why not share!

- 2D and 3D Geometry Formulas eBook by PDF eBooks For Free 23213 views
- Geometry formula sheet by sidraqasim99 13517 views
- Notes and-formulae-mathematics by Ragulan Dev 11364 views
- Geometry formula-sheet by AdheeraD-ra QN 9939 views
- Formula sheet by Vinit Kumar 4198 views
- Algebra Important Formulae -x std by DeepKnowledge 6491 views

10,996 views

Published on

A list of algebraic formulas to help you process your math problems better

No Downloads

Total views

10,996

On SlideShare

0

From Embeds

0

Number of Embeds

1,450

Shares

0

Downloads

331

Comments

0

Likes

8

No embeds

No notes for slide

- 1. Algebra Cheat Sheet Basic Properties & Facts Arithmetic Operations Properties of Inequalities If a < b then a + c < b + c and a − c < b − c a b If a < b and c > 0 then ac < bc and < c c a b If a < b and c < 0 then ac > bc and > c c b ab a = c c ab + ac = a ( b + c ) a a b = c bc a ac = b b c a c ad + bc + = b d bd a c ad − bc − = b d bd a −b b−a = c−d d −c Properties of Absolute Value if a ≥ 0 a a = if a < 0 −a a ≥0 −a = a a+b a b = + c c c a ad b = c bc d ab + ac = b + c, a ≠ 0 a a+b ≤ a + b (a ) n m an 1 = a n−m = m−n m a a ( ab ) a 0 = 1, a ≠ 0 n n a −n = a b = a nm −n 1 an n bn b = = n a a n m 1 a = an m n a = nm a ( x2 − x1 ) + ( y2 − y1 ) 2 2 n Complex Numbers i = −1 ( ) = (a ) a = a Properties of Radicals n d ( P , P2 ) = 1 a a = n b b 1 = an −n a = a nb n Triangle Inequality Distance Formula If P = ( x1 , y1 ) and P2 = ( x2 , y2 ) are two 1 points the distance between them is Exponent Properties a n a m = a n+m a a = b b ab = a b 1 m n n 1 m i 2 = −1 −a = i a , a ≥ 0 ( a + bi ) + ( c + di ) = a + c + ( b + d ) i ( a + bi ) − ( c + di ) = a − c + ( b − d ) i ( a + bi )( c + di ) = ac − bd + ( ad + bc ) i ( a + bi )( a − bi ) = a 2 + b 2 n ab = n a n b a + bi = a 2 + b 2 n a na = b nb ( a + bi ) = a − bi Complex Conjugate 2 ( a + bi )( a + bi ) = a + bi n a n = a, if n is odd n Complex Modulus a n = a , if n is even For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu. © 2005 Paul Dawkins
- 2. Logarithms and Log Properties Definition y = log b x is equivalent to x = b y Logarithm Properties log b b = 1 log b 1 = 0 log b b x = x b logb x = x log b ( x r ) = r log b x Example log 5 125 = 3 because 53 = 125 log b ( xy ) = log b x + log b y Special Logarithms ln x = log e x natural log x log b = log b x − log b y y log x = log10 x common log where e = 2.718281828K The domain of log b x is x > 0 Factoring and Solving Factoring Formulas x 2 − a 2 = ( x + a )( x − a ) Quadratic Formula Solve ax 2 + bx + c = 0 , a ≠ 0 x 2 + 2ax + a 2 = ( x + a ) 2 x 2 − 2ax + a 2 = ( x − a ) 2 −b ± b 2 − 4ac 2a 2 If b − 4ac > 0 - Two real unequal solns. If b 2 − 4ac = 0 - Repeated real solution. If b 2 − 4ac < 0 - Two complex solutions. x= x 2 + ( a + b ) x + ab = ( x + a )( x + b ) x3 + 3ax 2 + 3a 2 x + a 3 = ( x + a ) x3 − 3ax 2 + 3a 2 x − a 3 = ( x − a ) 3 3 Square Root Property If x 2 = p then x = ± p x3 + a3 = ( x + a ) ( x 2 − ax + a 2 ) x3 − a 3 = ( x − a ) ( x 2 + ax + a 2 ) x −a 2n 2n = (x −a n n )( x n +a n ) If n is odd then, x n − a n = ( x − a ) ( x n −1 + ax n − 2 + L + a n −1 ) xn + a n Absolute Value Equations/Inequalities If b is a positive number p =b ⇒ p = −b or p = b p <b ⇒ −b < p < b p >b ⇒ p < −b or p>b = ( x + a ) ( x n −1 − ax n − 2 + a 2 x n −3 − L + a n −1 ) Completing the Square (4) Factor the left side Solve 2 x − 6 x − 10 = 0 2 2 (1) Divide by the coefficient of the x 2 x 2 − 3x − 5 = 0 (2) Move the constant to the other side. x 2 − 3x = 5 (3) Take half the coefficient of x, square it and add it to both sides 2 2 9 29 3 3 x 2 − 3x + − = 5 + − = 5 + = 4 4 2 2 3 29 x− = 2 4 (5) Use Square Root Property 3 29 29 x− = ± =± 2 4 2 (6) Solve for x 3 29 x= ± 2 2 For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu. © 2005 Paul Dawkins
- 3. Functions and Graphs Constant Function y = a or f ( x ) = a Graph is a horizontal line passing through the point ( 0, a ) . Line/Linear Function y = mx + b or f ( x ) = mx + b Graph is a line with point ( 0, b ) and slope m. Slope Slope of the line containing the two points ( x1 , y1 ) and ( x2 , y2 ) is y2 − y1 rise = x2 − x1 run Slope – intercept form The equation of the line with slope m and y-intercept ( 0,b ) is y = mx + b Point – Slope form The equation of the line with slope m and passing through the point ( x1 , y1 ) is m= y = y1 + m ( x − x1 ) Parabola/Quadratic Function 2 2 y = a ( x − h) + k f ( x) = a ( x − h) + k The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at ( h, k ) . Parabola/Quadratic Function y = ax 2 + bx + c f ( x ) = ax 2 + bx + c The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex b b at − , f − . 2a 2 a Parabola/Quadratic Function x = ay 2 + by + c g ( y ) = ay 2 + by + c The graph is a parabola that opens right if a > 0 or left if a < 0 and has a vertex b b at g − , − . 2a 2 a Circle 2 2 ( x − h) + ( y − k ) = r 2 Graph is a circle with radius r and center ( h, k ) . Ellipse ( x − h) 2 ( y −k) + 2 =1 a2 b2 Graph is an ellipse with center ( h, k ) with vertices a units right/left from the center and vertices b units up/down from the center. Hyperbola ( x − h) 2 ( y −k) − 2 ( x − h) 2 =1 a2 b2 Graph is a hyperbola that opens left and right, has a center at ( h, k ) , vertices a units left/right of center and asymptotes b that pass through center with slope ± . a Hyperbola (y −k) 2 =1 b2 a2 Graph is a hyperbola that opens up and down, has a center at ( h, k ) , vertices b units up/down from the center and asymptotes that pass through center with b slope ± . a For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu. − © 2005 Paul Dawkins
- 4. Common Algebraic Errors Error Reason/Correct/Justification/Example 2 2 ≠ 0 and ≠ 2 0 0 Division by zero is undefined! −32 ≠ 9 −32 = −9 , (x ) (x ) 2 3 2 3 ≠ x5 a a a ≠ + b+c b c 1 ≠ x −2 + x −3 2 3 x +x − a ( x − 1) ≠ − ax − a x2 + a2 ≠ x + a x+a ≠ x + a ( x + a) ≠ x n + a n and n = 9 Watch parenthesis! = x2 x2 x2 = x6 ( x + a) ≠ x2 + a2 2 2 1 1 1 1 = ≠ + =2 2 1+1 1 1 A more complex version of the previous error. a + bx a bx bx = + = 1+ a a a a Beware of incorrect canceling! − a ( x − 1) = − ax + a Make sure you distribute the “-“! a + bx ≠ 1 + bx a ( x + a) ( −3 ) n x+a ≠ n x + n a = ( x + a )( x + a ) = x 2 + 2ax + a 2 2 5 = 25 = 32 + 42 ≠ 32 + 42 = 3 + 4 = 7 See previous error. More general versions of previous three errors. 2 ( x + 1) = 2 ( x 2 + 2 x + 1) = 2 x 2 + 4 x + 2 2 2 ( x + 1) ≠ ( 2 x + 2 ) 2 ( 2 x + 2) 2 2 2 ≠ 2 ( x + 1) ( 2 x + 2) = 4 x2 + 8x + 4 Square first then distribute! See the previous example. You can not factor out a constant if there is a power on the parethesis! 2 1 − x2 + a2 ≠ − x2 + a2 a ab ≠ b c c a ac b ≠ c b − x2 + a2 = ( − x2 + a 2 ) 2 Now see the previous error. a a 1 a c ac = = = b b 1 b b c c a a b = b = a 1 = a c c b c bc 1 For a complete set of online Algebra notes visit http://tutorial.math.lamar.edu. © 2005 Paul Dawkins

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment