Hip, pelvis, femur and knee lower extremity trauma 2012

4,476 views

Published on

Published in: Health & Medicine
0 Comments
11 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,476
On SlideShare
0
From Embeds
0
Number of Embeds
102
Actions
Shares
0
Downloads
637
Comments
0
Likes
11
Embeds 0
No embeds

No notes for slide

Hip, pelvis, femur and knee lower extremity trauma 2012

  1. 1. HIP, PELVIS, FEMUR, AND KNEE Lower Extremity Trauma AAOS/ASSH GENEERAL ORTHO REVIEW MATTHEW L. JIMENEZ www.drjimenez.com
  2. 2. Mandatory Disclosure•  The 2012 14th Annual Chicago Trauma Symposium received support from 40 industry partners
  3. 3. Mandatory Disclosure•  Foundation for Education and Musculoskeletal Research (FEMR) several industry and philanthropic partners
  4. 4. OUTLINE•  Handouts are from OKUs –  Need to know for the test•  This lecture gives context to the written material•  Trauma care is a visual art
  5. 5. WHAT IS HIGH ENERGY?KE = ½MV²
  6. 6. PELVIC-ASSOCIATED INJURIES•  HEMORRHAGE 75%•  UROGENITAL 12%•  LUMBOSACRAL PLEXUS 8%
  7. 7. HIGH ENERGYPELVIC FRACTURES•  MORTALITY RATE 15-25%•  OTHER ASSOCIATED MUSCULOSKELETAL INJURIES 60-80%
  8. 8. PELVICRADIOGRAPHY
  9. 9. ASSESSMENT (RADIOGRAPHS)•  AP PELVIS
  10. 10. INLET VIEW
  11. 11. OUTLET VIEW
  12. 12. PELVIC ANATOMY
  13. 13. PELVIS•  LINK – Axial Skeleton – Lower Extremity Appendicular Skeleton
  14. 14. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  15. 15. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  16. 16. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  17. 17. PELVIS•  Several Structures of Consequence Pass Through the Pelvis –  Vascular –  Neurologic –  Genitourinary –  Gastrointestinal
  18. 18. CAUSES OF DISABILITY•  Persistent Pain –  Malunion –  Nonunion•  Deformity –  Pelvic Obliquity –  Malrotation –  Leg Length Discrepancy
  19. 19. INDICATIONS•  One Cannot Consider the Indications for Treatment of Pelvic Fractures Without an Understanding of: – Pelvic Anatomy – Pelvic Biomechanics… Stability Concept
  20. 20. PELVIS•  Bones Have No Inherent Stability
  21. 21. STABILITY•  Stability Comes from the Ligaments
  22. 22. PELVIC DIAPHRAGM•  Like a Trampoline
  23. 23. PELVIC DIAPHRAGM•  Coccygeal and Levator Ani Muscles•  Traversed by Three Major Structures –  Urethra –  Rectum –  Vagina
  24. 24. DISRUPTED PELVIC DIAPHRAGM
  25. 25. PELVIC DIAPHRAGMFemale: Recto-Vaginal Trauma
  26. 26. PELVIC DIAPHRAGM Male: Genitourinary TraumaExternal Rotation-Abduction Tractor-Pull
  27. 27. URETHRAL INJURY Prostate Pelvic Floor Bulbous Portion Urethra
  28. 28. URETHRAL INJURY
  29. 29. LUMBOSACRAL PLEXUS• Anterior Rami ofT12 through S4• L4 through S1 MostImportant Clinically
  30. 30. LUMBOSACRAL PLEXUS S1 Shear L5 S1
  31. 31. LUMBOSACRAL PLEXUS
  32. 32. BLOOD VESSELS•  Massive Hemorrhage is the Major Complication of Pelvic Disruptions
  33. 33. PELVIC VEINS•  Large Thin Walled Posterior Venous Plexus –  Most Drain Into the Internal Iliac Vein•  Bleeding Often Venous
  34. 34. PELVIC ARTERIES•  The Internal Iliac Artery is the Vessel of Major Importance in Pelvic Trauma
  35. 35. PELVIC ARTERIES•  The Superior Gluteal Artery is the Largest Branch of the Internal Iliac Artery
  36. 36. PELVICSTABILITY
  37. 37. FORCE VECTORS•  Anteroposterior Compression•  Lateral Compression•  External Rotation Abduction•  Vertical Shear
  38. 38. UNIVERSAL CLASSIFICATION•  Type A: STABLE•  Type B: Partially Stable –  Rotationally Unstable•  Type C: Unstable –  Tri-planer Instability
  39. 39. STABILITY IS A CONTINUUM Unidirectional MultidirectionalStable Instability Instability
  40. 40. RATIONALE FOR SURGERY•  The goal is to Decrease the Incidence of: – Persistent Pain – Malunion – Nonunion
  41. 41. SURGICALINDICATIONS
  42. 42. EMERGENTSTABILIZATION•  PELVIC SLING – STANDARD SHEET•  INTERNAL ROTATION LOWER EXTREMITIES•  SANDBAGS
  43. 43. SURGICAL INDICATIONS Uniplanar Instability•  Rotationally Unstable Pelvic Fracture – Pubic Symphysis Widening of Greater than 2.5 cm Rotationally Unstable, but Vertically Stable
  44. 44. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  45. 45. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  46. 46. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  47. 47. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  48. 48. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  49. 49. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  50. 50. SURGICAL INDICATIONS Multi-planar Instability•  Unstable Posterior Pelvic Ring –  SI Joint Dislocation –  SI Joint Fracture- Dislocation –  Unstable Sacral Fractures –  Unstable Posterior Iliac Wing Fractures
  51. 51. ACETABULAR FRACTURES
  52. 52. Acetabular Fractures Disrupt the Contact Area Between the Acetabulum and Femoral Head
  53. 53. Displacement of the Articular Surface leads to rapid Destruction of the Hip
  54. 54. Articular Fracture Principles•  Anatomic Reduction of Articular Surface•  Congruent, Stable joint with restored contact area
  55. 55. ANATOMY•  ANTERIOR COLUMN•  POSTERIOR COLUMN
  56. 56. ANATOMY•  ANTERIOR COLUMN –  ANT BORDER ILIAC WING –  ANTERIOR WALL –  SUPERIOR PUBIC RAMUS –  ENTIRE PELVIC BRIM
  57. 57. ANATOMY•  POSTERIOR COLUMN –  GREATER SCIATIC NOTCH –  LESSER SCIATIC NOTCH –  ISCHIAL TUBEROSITY –  POSTERIOR WALL
  58. 58. RADIOLOGY•  AP PELVIS•  AP & LAT HIP•  OBTURATOR OBLIQUE•  ILIAC OBLIQUE
  59. 59. CLASSIFICATION•  1964 JUDET – ANATOMIC CLASSIFICATION•  LETOURNEL - SLIGHT MODIFICATION
  60. 60. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  61. 61. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  62. 62. Surgical Indications•  Displaced Fractures (>2-3 mm)•  Roof Arc Measurements <45°•  > 20-40% of posterior wall width
  63. 63. Treatment Protocol•  Radiographs Allow Proper Fracture Classification•  Fracture Location and Displacement Determine Need for Surgery•  Fracture Pattern Determines Approach
  64. 64. SURGICAL APPROACHES•  KOCHER-LANGENBECK – Posterior•  ILIOINGUINAL – Anterior•  EXTENDED ILIOFEMORAL
  65. 65. KOCHER- LANGENBECK•  POSTERIOR WALL•  POSTERIOR COLUMN•  TRANSVERSE•  SOME T-TYPE
  66. 66. ILIOINGUINAL•  ANTERIOR WALL•  ANTERIOR COLUMN•  TRANSVERSE•  SOME T-TYPE•  MOST - BOTH COLUMN
  67. 67. EXTENDED ILIOFEMORAL•  TRANSVERSE AND T-TYPE –  TRANSTECTAL –  SEVERE COMMINUTION –  LATE PRESENTATION•  BOTH-COLUMN –  LATE PRESENTATION –  SEVERE COMMINUTION
  68. 68. HIP FRACTURES AND DISLOCATIONS
  69. 69. RELEVANT ANATOMY•  Blood supply to the femoral head is derived primarily from the medial femoral circumflex artery, which forms an extracapsular ring with the lateral femoral circumflex artery
  70. 70. RELEVANT ANATOMY•  Ascending arteries follow the posterior femoral neck and perforate the femoral head at the junction of the inferior articular surface.
  71. 71. HIP DISLOCATION•  Associated with vascular injury•  Can result in AVN –  Subsequent post-traumatic hip arthrosis
  72. 72. POSTERIOR HIP DISLOCATION•  Account for nearly 90% of all hip dislocations
  73. 73. POSTERIOR HIP DISLOCATION•  Treatment –  Emergent closed reduction –  Open reduction through a Kocher-Langenbeck approach if closed reduction is unsuccessful
  74. 74. POSTERIOR HIP DISLOCATION•  Sciatic nerve is an at risk structure –  Initial injury –  Surgical reduction –  Occur in 8-19% of patients
  75. 75. COMPLICATIONS OF HIP DISLOCATIONS•  Avascular necrosis of femoral head in 10% of hip dislocations –  Risk of AVN increases with associated acetabular fracture –  Early reduction of hip dislocations is associated with a lower rate of AVN•  Post-traumatic hip arthritis in 15% of hip dislocations.
  76. 76. FEMORAL HEAD FRACTURES•  Pipkin Classification- Four types –  Type I- inferior to the fovea –  Type II- superior to the fovea –  Type III- associated femoral neck fracture –  Type IV- associated acetabular fracture
  77. 77. FEMORAL HEAD FRACTURES•  Treatment based on: – Fragment size – Fragment location – Fragment displacement – Hip stability
  78. 78. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  79. 79. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  80. 80. FEMORAL HEAD FRACTURES- treatment•  Type I (infra-foveal) –  Nondisplaced- nonsurgical –  Small displaced fragments- surgical excision –  Large displaced fragments- reduction and surgical fixation
  81. 81. FEMORAL HEAD FRACTURES- treatment•  Type II (supra-foveal) –  Requires accurate anatomic reduction and stable internal fixation
  82. 82. FEMORAL HEAD FRACTURES- treatment•  Type III (associated femoral neck frx) –  Young patient •  Anatomic reduction and stable internal fixation of both the femoral neck and femoral head –  Older patient •  Hemiarthroplasty
  83. 83. Pipkin Type IV Fracture
  84. 84. FEMORAL NECK FRACTURES
  85. 85. FEMORAL NECK FRACTURES- Classification•  Pauwel s Classification - based on fracture verticality –  Type I- Less than 30 degress –  Type II- 30-50 degrees –  Type III- Greater than 50 degrees
  86. 86. FEMORAL NECK FRACTURES- Classification•  Garden Classification –  Type I and II – nondisplaced –  Type III and IV - displaced
  87. 87. FEMORAL NECK FRACTURES- Nondisplaced•  Nondisplaced femoral neck fractures –  Treatment is the same regardless of the patient age
  88. 88. FEMORAL NECK FRACTURES- Nondisplaced•  Nondisplaced femoral neck fractures – Internal Fixation – Three parallel screws
  89. 89. FEMORAL NECK FRACTURES- Nondisplaced•  Ideal screw configuration – Inverted triangle – Screws positioned along the endosteal surface
  90. 90. Implant Position The Concept of Cortical SupportCase Study:64 year oldwoman with impacted
  91. 91. Cortical SupportRx: Fixation in situ
  92. 92. Cortical SupportPost-op Ten days
  93. 93. Cortical SupportPost-op Ten days
  94. 94. Cortical Support
  95. 95. FEMORAL NECK FRACTURES- Displaced•  Young Patients (<65 years old) –  Efforts are focused on preservation of the femoral head and avoiding arthroplasty at a young age –  ORIF
  96. 96. FEMORAL NECK FRACTURES- Displaced•  Young patients –  Timing is urgent –  Lower rates of AVN with early treatment –  Anatomic reduction and stable fixation –  Slight valgus acceptable –  Avoid varus reductions
  97. 97. ORIF: most important variable is quality of reduction
  98. 98. FEMORAL NECK FRACTURES- Displaced•  Young patients –  High shear angle fractures (Pauwel s III) •  Supplement fixation with a fixed angle device •  Additional Oblique screw
  99. 99. PROBLEM CHILD!!
  100. 100. FEMORAL NECK FRACTURES- Displaced•  Older patients –  In North America, prosthetic replacement is favored
  101. 101. FEMORAL NECK FRACTURES- Displaced•  Why endoprosthesis in older patients? –  Need for rapid mobilization –  ORIF failure rate of 40% •  Osteoporotic bone •  Comminution
  102. 102. FEMORAL NECK FRACTURES- Displaced•  Older patients- type of prosthetic replacement? –  Unipolar hemiarthroplasty –  Bipolar hemiarthroplasty –  Cemented vs. uncemented Unipolar Bipolar
  103. 103. FEMORAL NECK FRACTURES- Displaced•  Older patients- type of prosthetic replacement? –  NO difference in morbidity, mortality, or functional outcome
  104. 104. FEMORAL NECK FRACTURES- Displaced•  Older patients- Total Hip Arthroplasty –  Classic indication •  Displaced fracture with ipsilateral hip arthritis –  Recently indication expanded •  Displaced fracture and an active elderly patient with no hip arthritis
  105. 105. INTERTROCHANTERIC HIP FRACTURES- Classification
  106. 106. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Intertrochanteric hip fractures are treated the same, regardless of age
  107. 107. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Anatomic reduction and stable internal fixation•  Choice of implant based on –  Fracture pattern –  Associated stability of the fracture
  108. 108. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Sliding hip screw –  Useful for most (avoid in reverse oblique) –  Simple and predictable
  109. 109. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Sliding hip screw –  Do not use with reverse oblique fracture patterns
  110. 110. Reverse ObliquityIntertochanteric Fixation Mode of failure l Medializationof the distal fragment l Cutout l Non-union
  111. 111. 56% FAILURE RATE Haidukewych et al JBJS 2001
  112. 112. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Reverse oblique fracture pattern –  95 degree plate fixation •  95 degree dynamic condylar screw •  95 degree condylar blade plate –  Cephalomedullary device
  113. 113. Reverse ObliquityIntertochanteric Fracture Options for Treatment
  114. 114. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Outcomes – No difference between a two- hole and four- hole sliding hip screw
  115. 115. INTERTROCHANTERIC HIP FRACTURES- Treatment•  Cepholomedullary device –  No clear advantage over conventional sliding hip screw for most fractures –  Exceptions •  Reverse oblique fractures •  Intertrochanteric fractures with subtrochanteric extension –  More studies necessary
  116. 116. Cephalomedullary Nails
  117. 117. Femoral Shaft FracturesPrinciples of IM Nailing: – Mechanics: •  Stable fixation allows mobility – Biology •  Dissection away from fracture environment
  118. 118. Femoral Shaft FracturesReamed Antegrade NailingWinquist JBJB 1984 520 99.1%Brumback JBJS 1988 100 98%Brumback JBJS 1989 89 Open 100%Nowotarski JBJS 1994 39 GSW 95%Bergman J Trauma 1993 65 GSW 100% 98-99% union rate!
  119. 119. Femoral Shaft Fractures•  Static locked antegrade nails•  98% ultimate healingThe Gold Standard
  120. 120. Ante vs. Retro Femoral Nailing3 comparative studies •  Ricci et al., JOT, 2001 •  Tornetta and Tiburzi, JBJS-Br., 2000 •  Ostrum et al., JOT, 2000
  121. 121. Ante vs. Retro Femoral NailingFinal Healing % Ricci Tornetta Ostrum A 99 100 100 R 97 100 98 No difference in healing rates
  122. 122. Ante vs. Retro Femoral NailingKnee Pain Ricci Tornetta Ostrum A 9% 14% 10% R 36% 13% 11% Maybe a difference in knee pain
  123. 123. Ante vs. Retro Femoral NailingHip/ Thigh Pain Ricci Tornetta Ostrum A 10% n/a 26% R 4% n/a 4% More hip pain after antegrade
  124. 124. orAll 3 options appear reasonable or
  125. 125. Femoral Nailing: SummaryWe all know basic nailing•  Good starting point•  Quality reduction•  Ream•  Large nail•  Lock
  126. 126. DISTAL FEMUR FRACTURES
  127. 127. GENERAL PRINCIPLES•  Anatomic reduction of the articular surface•  Restoration of –  Length –  Rotation –  Alignment•  Stable fixation- Soft tissue friendly•  Early mobilization
  128. 128. THE ARTICULAR SEGMENT•  Anatomic reduction•  Absolute Stability – Compression•  Do not compromise
  129. 129. ARTICULAR CARTILAGE•  No Blood Supply•  No Nerve Supply•  No Lymphatic Supply•  Nutrition From Synovial Fluid (Diffusion)
  130. 130. Meta-diaphyseal Segment•  Bridge•  Relative stability•  Avoid dissection in the zone of injury•  Restoration of overall –  Length –  Rotation –  Alignment
  131. 131. PREVIOUSPLATING OPTIONS•  Condylar Buttress•  Angled Blade Plate•  Dynamic Condylar Screw
  132. 132. Condylar Buttress Plate
  133. 133. Blade Plate
  134. 134. Comminuted fracture with shortmetaphyseal segment
  135. 135. 95 degree DCS
  136. 136. Screw Cut-out
  137. 137. IS THERE ANOTHER SOLUTION?•  Locking Plate fixation with multiple fixed angle screws in the metaphyseal segment – Locking Condylar Plate – Liss Plate
  138. 138. Conventional Plate First Screw Failure
  139. 139. Conventional Plate Sequential Screw Failure
  140. 140. Conventional Plate Plate/Bone Dissociation
  141. 141. Locking Plate Threaded HeadLocked Screws are Fixed Angle Constructs
  142. 142. Locking PlateMust Fail Simultaneously
  143. 143. Locking Plate
  144. 144. Locking PlateCatastrophic Failure Less Likely
  145. 145. MIPPO•  Minimally invasive percutaneous plate osteosynthesis•  Submuscular plating C. Kretek
  146. 146. MIPPO: What is it?•  A Concept•  A Technique•  Involves reduction•  Involves stabilization•  Not implant driven
  147. 147. Conventional Plating
  148. 148. MIPPO- Limited incisions andsubmuscular plate application
  149. 149. OR Logistics•  Supine on a radiolucent table•  Limb prepped free•  Knee support•  Femoral distractor or large external fixator
  150. 150. Beware of soft tissue stripping in the zone of injuryLateral tensor-splitting surgical approach
  151. 151. Lateral Peripatellar Approach
  152. 152. REDUCTION•  Articular segment reduced under direct vision –  3.5 cortical screws –  Compression when possible•  Indirect reduction of meta-diaphyseal segment –  Avoid soft-tissue stripping
  153. 153. Osteoporotic, short metaphyeal segment,intra-articular extension
  154. 154. -Note sub-articular 3.5 cortical screws-Joint reduced under direct vision
  155. 155. SUMMARY•  Anatomic reduction and absolutely stable fixation of articular surface•  Restore –  Length –  Rotation –  Alignment•  Stable Fixation –  Biologically friendly
  156. 156. THANK YOUWWW.DRJIMENEZ.COM

×