The Highlands Center For Natural History                               JAMES LEARNING CENTER                            Wi...
site-sensitivity                           A Site-Sensitive Approach                           As an environmental steward...
contextual design                                                                                  4                      ...
space–efficiency                           High Efficiency + Maximum                           Flexibility                ...
integrated high-performance                                                                                               ...
South façade from                                                        southeast corner                                 ...
Left: Natural stone wall in                                                                                      Welcome C...
green details                           Tree-Huggin Details By Hand                           Hand-made artwork and custom...
off-the-shelf sustainability                           OFF-THE-SHELF SUSTAINABILITY                           & TRANSFERAB...
water efficiency                           Water Conservation Strategies (Building and Site)                           Wat...
natural daylight & ventilation                           Lighting Quality                           The lighting system fo...
resource conservation                           Local Materials Used                           Local materials used includ...
ecological impact                           Minimum Ecological Impact                           As an environmental stewar...
heating & cooling systems                           Mechanical System Selection                           Significant cont...
energy modeling                           Energy Simulation Analysis                           Results of our energy simul...
LEED-Gold Summary                           The James Learning Center was awarded a LEED-Gold certification in February 20...
acknowledgements                           LEED-GOLD PROJECT TEAM                           CLIENT                        ...
Truly you have created a building that is a                           magnificent marriage of form and function. I know   ...
C A T A L Y S T A R C H I T E C T U R E	CATALYST	ARCHITECTURE    	Catalyst Architecture
Upcoming SlideShare
Loading in …5

James Learning Center | LEED-Gold


Published on

Completed in January 2007, The James Environmental Learning Center is the new educational and administrative home for the Highlands Center for Natural History. The 4,250 sq. ft. demonstration facility is completely off-grid. Natural daylight and ventilation strategies combined with a well designed and properly oriented building envelope, allows over 70% of the building’s heating and cooling needs to be supplied passively.

On February 8, 2008, the The James Learning Center became Prescott’s 1st LEED certified building, as well as earning the distinction of becoming Yavapai County’s first LEED-Gold certified project.

The James Learning Center was the recipient of the 2010 AIA SRP Sustainability Award

  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

James Learning Center | LEED-Gold

  1. The Highlands Center For Natural History JAMES LEARNING CENTER Winner of the 2010 AIA Sustainability Award Prescott’s First LEED Certified Building First LEED-GOLD in Yavapai CountyCATALYST View of south façade at duskARCHITECTURE Catalyst Architecture
  2. site-sensitivity A Site-Sensitive Approach As an environmental stewardship organization, a site-sensitive approach for the buildings placement on the land was imperative. Leaving the majority of the 80 acre site undisturbed for hiking trails, as well as to protect existing plant and animal habitat, was an essential consideration. A small clearing near the existing structures and parking lots, with favorable solar access, and an east-west orientation (for passive solar optimization) was ultimately chosen for the Learning Center building pad. Plan at right shows only the developed portion of 80 acre property (approx 6 acres). NOTE: Site is heavily wooded– not all trees are shown. LEGEND 1  James Learning Center 5 Amphitheater building (existing) 2  Natural detention glade 6 Interpretive sculpture 3  Sidewalks (existing) 7 Restroom building (existing) 4  Parking lot (existing) 8 Water storage tank (existing)CATALYST ARCHITECTURE Catalyst Architecture
  3. contextual design 4 5 A Natural Context The 80 acre site wasprovided to the Highlands Center as a long term lease from the Prescott National Forest. Careful integration with the existing buildings, as well as with the densely forested site, was a Designing With Nature paramount consideration for the building’s The vertical log support structure placement and design. echos the many pine trees which surround the building site (image Though the new building below & left). form is a dramatic 3 departure from theexisting structures, similar materials, finishes andcolors (wood, stucco, and metal roofing), help contextually integrate the new building with its surroundings. 1 2 LEGEND 1 East roof edge drainage point (looking SW) 4 Existing Restroom Bldg. (from building pad, looking SE) 2 South façade (from Amphitheater Bldg., looking NW) 5 Existing Amphitheater Bldg. (from Bathroom bldg., looking SE) 3 West façade (from highway access point, looking East)CATALYST ARCHITECTURE Catalyst Architecture
  4. space–efficiency High Efficiency + Maximum Flexibility Development of the floor plan focused on achieving a maximum efficiency of space usage, with a minimum of single-use corridor or hallway space. Flexibility within the administrative areas was also a key concern, as evolving programs required adaptable staff and volunteer work areas, space arrangements and relationships. South facing stone interior walls (denoted in red) constructed with rock collected on site, provides efficient thermal storage for the low-angle solar gain available during the coldest months. The curvilinear south exterior wall helps visually tie the building to the organic forms found on the site.CATALYST ARCHITECTURE Catalyst Architecture
  5. integrated high-performance CAD model showing primary mechanical and structural systems High-Performance Design Diagrammatic section at right shows the integrated high- performance design systems of the James Learning Center. Operable clerestory windows north and south, sized for maximum solar gain and daylight contribution (with minimal heat loss), also serve to ventilate the building when needed. A south facing interior stone wall, built from rock harvested on site, stores solar heat during the cold winter months, warming the building and stabilizing indoor temperatures. Deciduous vines trained over the lower south-facing windows, allows sunlight into the building during the winter, while shading out solar gain during the summer. Section looking west through Welcome Center/Bookstore and Mult-Purpose Classroom Reflective light shelves north and south help bounce additional LEGEND daylight into the interior of the building. 1  Deciduous vines on trellis for summer shading 6 Radiant heat in 5” stained concrete floor 2  Light shelf (in front and behind trellis) 7 Locally harvested tree poles 3  Operable clerestory windows for natural daylight and ventilation 8 South facing 8Kw photovoltaic array 4  Inverted roof for rainwater catchment 9 Light shelf and mechanical plenum 5  Natural stone wall for thermal storage 10 Operable windows for daylight, views and ventilationCATALYST ARCHITECTURE Catalyst Architecture
  6. South façade from southeast corner organic design High-Efficiency In An Organic Form The exterior form of the James Learning Center is intended to address several needs. First, as a demon- stration facility, the primary function of the building is to teach (via example). Towardsthat end, both the design team and client agreed that as a teaching instrument, the building must strive to capture not only ones attention, but ones imagination as well. The soaring lines of the butterfly-shaped roof appear An Expression of Values as if poised for flight. Thisorganic design, however, also Computer modeling established the serves other more practical precise curve of the roof in order to purposes, namely that of provide effective shading for the creating space for the north clerestory windows during the cooling and south clere-story season, while allowing solar gain towindows, as well as providing penetrate the upper windows during the a very visible rain-water winter heating season. collection device. An organically shaped south wall expresses the environmentally rooted mission of the Highlands Center organization. View of building from southwest CATALYST ARCHITECTURE Catalyst Architecture
  7. Left: Natural stone wall in Welcome Center/Bookstore light & warmth looking northwest Far Left: Multi-Purpose Classroom looking northeast The interior spaces were designed for maximum comfort and flexibility. A linear storage bay along the south wall provides ample table and chair storage for the Learning Center’s diverse program needs. Louvered storage doors help distribute heat from the adjacent interior thermal mass stone wall into the classroom area. Dimmable fluorescents, along with north-facing clerestory and eye-level windows provides an even, well-lighted interior. Natural woods, a 5" thick stained concrete floor, and soft earth tones create a warm, comfortable environment for learning. Reception Area clerestory windowsCATALYST Multi-purpose Classroom lookingARCHITECTURE southeastCatalyst Architecture
  8. green details Tree-Huggin Details By Hand Hand-made artwork and custom resource-conserving details and can be found in and around the James Learning Center: 1 Dark-sky compliant custom exterior light fixture (Artist: Royce Carlson) 2 Custom metal rainwater catchment at east end of building (Artist: Royce Carlson) 3 Typical wood bracket detail at post top (along south roof edge)Interpretive, interactive brass sculpture “Equipoise” (Artist: 4 Heather Johnson) 1 3 4 2CATALYST ARCHITECTURE Catalyst Architecture
  9. off-the-shelf sustainability OFF-THE-SHELF SUSTAINABILITY & TRANSFERABILITY While the exterior of the James Learning Center was purposefully unique, it was also our client’s intention that visitors to the Highlands Center be able to learn about sustainable design strategies that could realistically be integrated into their own home or business. In response to this, the James Learning Center employs numerous “off-the-shelf” sustainable design and building technologies that could easily be incorporated into a private home or business. These include:   Proper building orientation   Passive solar design   Thermal mass   Natural daylight and ventilation   Directionally appropriate glazing   2 x wood framing (smaller structures only)   Locally harvested materials   Rainwater harvesting   Water-saving plumbing fixtures   Native plant selection   Non-Toxic materials & finishesCATALYST ARCHITECTURE Catalyst Architecture
  10. water efficiency Water Conservation Strategies (Building and Site) Water is one of the most critical development issues in the southwest. In response, the James Learning Center utilizes several water savings strategies both inside and outside of the building. Among these are:   Low water-use plumbing fixtures   Constructed wetlands for wastewater treatment   Rock weirs to slow runoff, control sedimentation, and encourage recharge   Meandering runoff for self-watering landscape   Minimized exterior hardscapes   Use of native, low-water plants to restore disturbed areas   Drip irrigation used only for establishment of plants (or during drought conditions)   Butterfly roof shape provides rainwater catchment for landscape irrigation Innovative Water Conserving Design Features The butterfly roof stands out as the most memorable design element of the building. As stated previously, the dramatic roof shape functions not only to collect rainwater, but to educate– by raising awareness of the preciousness of water as a vital resource. At the center of the butterfly roof valley, a large “cricket” helps channel water out towards both the east and west ends of the building, where the flow is then captured into large collection funnels, and then directed into the landscaping. The plant life which relies on this water includes the deciduous vines which play an active role in shading the building during the summer cooling season. Water Catchment DeviceCATALYST ARCHITECTURE Catalyst Architecture
  11. natural daylight & ventilation Lighting Quality The lighting system for the building is primarily composed of natural daylight. Reflective light shelves, exterior hardscape, interior and exterior soffits, as well as finished ceiling materials were selected based on their ability to maximize the amount of natural daylight that could utilized within the building’s interior. This design effort directly reduced the amount and size of powered lighting that was then required. Dimmable fluorescent strip lighting makes up the majority of the powered lighting within the building, which is manually controlled, when needed, by the Highlands Center staff. Overall electrical and lighting considerations played an important part in the conceptual orientation and design of the building. Since 100% of the building’s power comes from the Learning Center’s 8Kw photovoltaic solar array, every energy drawing item within the building had to analyzed for its anticipated electrical draw. All lighting systems, equipment, appliances, and computers were considered, and then re-considered in light of their potential electrical needs. Thermal Comfort Thermal comfort was addressed early on in the design process by taking full advantage of proper solar orientation. An east-west alignment for the building, along with windows precisely sized and placed for optimum passive solar gain contributed the structure’s highly-efficient energy performance. Operable clerestory windows stack functions by admitting solar gain and providing ventilation. The upper roof overhang provides shading for these windows during the summer, while vine covered trellises provide shading for the eye-level windows below. The building envelope itself is insulated with an R-28 blown-in cellulose in the walls, and an R-34 spray- foam insulation in the roof. Thermal mass is provided by a 4” thick natural stone (interior) wall veneer, as well as in the 5” thick stained concrete floor slab, helping to keep the Learning Center’s indoor temperatures comfortable and stable throughout the year.CATALYST ARCHITECTURE Catalyst Architecture
  12. resource conservation Local Materials Used Local materials used include tree poles which provide the main vertical structural support of the building, natural stone used to create thermal mass inside the building, as well as concrete block used to create stem walls and the earth sheltered retaining wall, located along the north side of the building. Regionally manufactured products include the standing seam metal roof, as well as the evaporative cooling units which were each fabricated in the metropolitan Phoenix area. LEED credits for Storage & Collection of Recyclables, Construction Waste Management, and Local & Regional Materials all contributed to the overall resource conservation qualities of the building. Innovative Resource Conservation One of the more innovative resource conservation strategies employed on the James Learning Center is the building-integrated use of plant materials for solar control. The use of these deciduous vines along the south side of the building (see CAD model image at right) eliminated the need for a more expensive, resource intensive solution, that would have required actual roof overhangs, or other constructed forms to provide. Shading perfomance CAD simluation for vine covered trellis Our use of these plants materials for solar control on the James Learning Center required only a light gauge metal frame, steel cable, and some water collected from the roof.CATALYST ARCHITECTURE Catalyst Architecture
  13. ecological impact Minimum Ecological Impact As an environmental stewardship organization, our client’s value of building lightly on the land was of paramount importance. The selected site did not require the clearing of any additional land, nor was a single tree removed for the construction. The building pad location was selected based on its proximity to the existing developed areas of the property, as well as within an existing clearing. LEED credits for Erosion & Sedimentation Control, Reduced Development Footprint, and Minimized Site Disturbance were all earned for this project. On a more global level, minimal ecological impact was achieved through the use of renewable (solar) energy which supplies 100% of the building’s electrical needs, as well as through the used of recycled, locally harvested, and regionally manufactured products. No refrigerant cooling was used in the building, as the Learning Center also earned LEED credits for CFC Reduction and Ozone Depletion. Features Relating to Sustainability Because the building was to be off-grid, many of the energy-efficient strategies selected were employed out of sheer necessity. The most striking feature of the design, its “butterfly” roof, addresses several energy- saving strategies at once; providing the high clerestory windows for natural daylight and flow-through ventilation, as well as for passive solar optimization of winter-time solar gain, and summer-time solar shading. Combined, these energy efficient design strategies allow almost 70% of the building’s heating and cooling needs to be supplied passively. Another architectural feature of the design that provides for energy-efficiency are the building’s wood and metal trellises (images at right), positioned over the lower, eye-level windows along the structure’s south elevation. These engineered trellises were designed to support deciduous vines, allowing sunlight to penetrate these windows during the winter months, while shading them during the summer. The Learning Center’s appearance therefore takes on an intentionally different look throughout the year, as the building exterior literally “responds” to the seasons.CATALYST ARCHITECTURE Catalyst Architecture
  14. heating & cooling systems Mechanical System Selection Significant contribution of the passive design elements of the building (quantified through Energy Modeling of the building) allowed a sizable decrease in the size and type of mechanical systems required to heat and cool the building. Additionally, energy systems constraints, as well as owner/occupant values and comfort needs, also helped determine the final mechanical system selection. As an environmental organization attuned to outdoor experience, neither the executive director nor support staff of the organization required, (or desired) refrigerant cooling, for example. The design-to temperature for the winter heating season was a modest 68°, with a summer design-to Real-Time Computer Simulated Solar Modeling cooling temperature of 78°. This less-demanding comfort zone requirement, combined with the passive energy contributions of the building itself, pointed towards variable-speed control evaporative cooling, and in-floor radiant heating as the appropriate heating and cooling system options for the James Learning Center. Life Cycle Considerations Life cycle cost considerations relative to the mechanical system choices for the Highands Center are consistent with the values of the organization for choosing high durability, low- replacement cost systems. The selected boiler’s lifespan, of between 25-40 years, combined with the life span of the PEX radiant in-floor tubing (between 50-100 years) is higher than comparable forced air systems. On the cooling side, evaporative cooling boasts one of the more favorable life cycle cost scenarios, as both first cost and annual operating cost are much lower compared to a typical refrigerant cooling system. Evaporative coolers located on north side of buildingCATALYST ARCHITECTURE Catalyst Architecture
  15. energy modeling Energy Simulation Analysis Results of our energy simulation analysis are summarized in the table and chart at right. In all, the Highland Center for Natural History will achieve $2,350 (66%) in annual utility savings per year as compared to a minimally compliant ASHRAE 90.1 building. Approximately 50% of the energy savings on the building can be attributed to the 8Kw photovoltaic system, which has been designed to provide 100% of the building’s electrical needs. Initial energy modeling demonstrated that, based on the quantifiable amount of passive heating and cooling contribution of the building itself, just how little supplemental heating and cooling would actually be needed. Graph at right illustrates the expected amounts of radiant Energy End-Use Simluation Model heating (red bars) and evaporative cooling (blue bars) needed on throughout the year on a month to month basis. Mechanical System Energy Requirements Total building system energy requirements from graph at right are as follows: Space Heating: 11,900 BTU/ sq.ft./ year Space Cooling: 00 BTU/ sq.ft./ year Fans: 400 BTU/ sq.ft./ year Pumps/Aux: 1,500 BTU/ sq.ft./ year TOTAL 13,800 BTU/ sq.ft./ year The 13,800 BTU/ sq. ft./ year energy requirement is roughly one-fifth (1/5th) the typical energy required for a conventional commercial building of similar size. Heating & Cooling Operation ModeCATALYST ARCHITECTURE Catalyst Architecture
  16. LEED-Gold Summary The James Learning Center was awarded a LEED-Gold certification in February 2008, making it the first LEED certified building in Prescott Arizona, as well as the first LEED-Gold facility in Yavapai County. Below is a summary of the credits earned in each of the six LEED categories. SUSTAINABLE SITES MATERIALS & RESOURCES Prq_1 Erosion & Sedimentation Control Prq_1 Storage & Collection of Recyclables Cr_1 Site Selection Cr_2.1 Construction Waste Diversion 50% Cr_4.2 Alternative Transportation- Bicycle Support Cr_2.2 Construction Waste Diversion 75% Cr_4.4 Alternative Transportation- Carpooling Cr_5.1 Local & Regional Materials Cr_5.1 Open Space Protection & Restoration Cr_5.2 Reduced Development Footprint Cr_7.1 Heat Island Reduction INDOOR ENVIRONMENTAL QUALITY Cr_8 Light Pollution Reduction Prq_1 Minimum IAQ Performance Site Selection WATER EFFICIENCY Prq_2 Environmental Tobacco Smoke Control Cr_2 Ventilation Effectiveness Cr_1.1 Water Efficient Landscaping Cr_4.1 Low-Emitting Adhesives & Sealants Cr_2 Innovative Wastewater Technologies Cr_4.2 Low-Emitting Paints & Stains Cr_3.1 Water Use Reduction Cr_4.4 Low-Emitting Composite Woods Cr_6.1 Controllability of Systems Cr_8.1 Daylight- 75% of Spaces ENERGY & ATMOSPHERE Cr_8.2 Views- 90% of Spaces Prq_1 Fundamental Building Commissioning Prq_2 Minimum Energy Performance Prq_3 CFC Reduction in HVAC & R Equipment INNOVATION IN DESIGN Typical trellis detail at south façade of building Cr_1 Optimized Energy Performance Cr_1.1 Sustainable Education Program Cr_2.1 Renewable Energy 5% Cr_1.2 Geen Maintenance Polices Cr_2.2 Renewable Energy 10% Cr_1.3 Exceed Renewable Energy (40% +) Cr_2.3 Renewable Energy 20% Cr_1.4 Exceed Energy Performance (65% +) Cr_4 Ozone Depletion Cr_2 LEED™ Accredited ProfessionalCATALYST ARCHITECTURE Catalyst Architecture
  18. Truly you have created a building that is a magnificent marriage of form and function. I know that I am proud to have been on the board that chose your design. I send you and your team a heartfelt THANK YOU. With deep gratitude, - Joan Dukes Highlands Center for Natural History Board MemberCATALYST View of south façade at duskARCHITECTURE Catalyst Architecture
  19. C A T A L Y S T A R C H I T E C T U R E CATALYST ARCHITECTURE Catalyst Architecture