Advertisement
Advertisement

More Related Content

Viewers also liked(20)

Advertisement
Advertisement

Win32/Flamer: Reverse Engineering and Framework Reconstruction

  1. Win32/Flamer: Reverse Engineering and Framework Reconstruction Aleksandr Matrosov Eugene Rodionov
  2. Outline of The Presentation  Typical malware vs. Stuxnet/Flame  What the difference?  Flamer code reconstruction problems  C++ code reconstruction  Library code identification  Flamer framework overview  Object oriented code reconstruction  Relationship Stuxnet/Duqu/Flamer
  3. Typical Malware vs. Stuxnet/Flamer
  4. What’s the Difference?
  5. What’s the Difference?  Typical malware  Stuxnet/Flame …  Different motivation, budget …  Different motivation, budget …  Use 1-days for distribution  Use 0-days for distribution  Anti-stealth for bypassing all sec  Anti-stealth for bypassing AV soft  Stealth timing: months  Stealth timing: years  Developed in C or C++ in C style  Tons of C++ code with OOP  Simple architecture for plugins  Industrial OO framework platform  Traditional ways for obfuscation:  Other ways of code obfuscation:  packers  tons of embedded static code  polymorphic code  specific compilers/options  vm-based protection  object oriented wrappers for typical OS utilities  …
  6. Stuxnet/Duqu/Flamer/Gauss Appearance
  7. Code Complexity Growth Gauss miniFlamer Stuxnet Duqu Flamer
  8. Code Complexity Growth
  9. C++ Code REconstruction Problems
  10. C++ Code Reconstruction Problems  Object identification  Type reconstruction  Class layout reconstruction  Identify constructors/destructors  Identify class members  Local/global type reconstruction  Associate object with exact method calls  RTTI reconstruction  Vftable reconstruction  Associate vftable object with exact object  Class hierarchy reconstruction
  11. C++ Code Reconstruction Problems Class A vfPtr a1() A::vfTable a2() meta A::a1() RTTI Object Locator A::a2() signature pTypeDescriptor pClassDescriptor
  12. C++ Code Reconstruction Problems
  13. Identify Smart Pointer Structure
  14. Identify Exact Virtual Function Call in vtable
  15. Identify Exact Virtual Function Call in vtable
  16. Identify Exact Virtual Function Call in vtable
  17. Identify Custom Type Operations
  18. Identify Objects Constructors
  19. Identify Objects Constructors
  20. Library code identification problems
  21. Library Code Identification Problems  Compiler optimization  Wrappers for WinAPI calls  Embedded library code  Library version identification problem  IDA signatures used syntax based detection methods  Recompiled libraries problem  Compiler optimization problem
  22. Library Code Identification Problems
  23. Object Oriented API Wrappers and Implicit Calls
  24. Object Oriented API Wrappers and Implicit Calls
  25. Object Oriented API Wrappers and Implicit Calls
  26. Festi: OOP in kernel-mode
  27. Main Festi Functionality store in kernel mode Win32/Festi Dropper Install kernel-mode driver user-mode kernel-mode Win32/Festi kernel-mode driver Download plugins Win32/Festi Win32/Festi Plugin 1 Plugin 2 ... Win32/Festi Plugin N
  28. Main Festi Functionality store in kernel mode Win32/Festi Dropper Install kernel-mode driver user-mode kernel-mode Win32/Festi kernel-mode driver Download plugins Win32/Festi Win32/Festi Plugin 1 Plugin 2 ... Win32/Festi Plugin N
  29. Festi: Architecture Win32/Festi Win32/Festi Win32/Festi C&C Protocol Plugin Manager Network Socket Parser Win32/Festi Memory Manager
  30. Festi: Plugin Interface Array of pointers to plugins Plugin 1 Plugin1 struct PLUGIN_INTERFACE Plugin 2 Plugin2 struct PLUGIN_INTERFACE Plugin 3 Plugin3 struct PLUGIN_INTERFACE ... Plugin N PluginN struct PLUGIN_INTERFACE
  31. Festi: Plugins  Festi plugins are volatile modules in kernel-mode address space:  downloaded each time the bot is activated  never stored on the hard drive  The plugins are capable of:  sending spam – BotSpam.dll  performing DDoS attacks – BotDoS.dll  providing proxy service – BotSocks.dll
  32. Flamer Framework Overview
  33. An overview of the Flamer Framework The main types used in Flamer Framework are:  Command Executers –the objects exposing interface that allows the malware to dispatch commands received from C&C servers  Tasks – objects of these type represent tasks executed in separate threads which constitute the backbone of the main module of Flamer  Consumers – objects which are triggered on specific events (creation of new module, insertion of removable media and etc.)  Delayed Tasks – these objects represent tasks which are executed periodically with certain delay.
  34. An overview of the Flamer Framework Vector<Consumer> Vector<Command Executor> DB_Query ClanCmd FileCollect Driller GetConfig Mobile Consumer Cmd Vector<Task> Consumer IDLER CmdExec Sniffer Munch FileFinder Lua Consumer Vector<DelayedTasks> Media Share LSS Consumer Euphoria Frog Beetlejuice Supplier Sender
  35. Some of Flamer Framework Components Identifying processes in the systems corresponding to Security security software: antiviruses, HIPS, firewalls, system information utilities and etc. Microbe Leverages voice recording capabilities of the system Idler Running tasks in the background BeetleJuice Utilizes bluetooth facilities of the system Telemetry Logging of all the events Gator Communicating with C&C servers
  36. Flamer SQL Lite Database Schema
  37. Flamer SQL Lite Database Schema
  38. REconstructing Flamer Framework
  39. Data Types Being Used  Smart pointers  Strings  Vectors to maintain the objects  Custom data types: wrappers, tasks, triggers and etc.
  40. Data Types Being Used: Smart pointers typedef struct SMART_PTR { void *pObject; // pointer to the object int *RefNo; // reference counter };
  41. Data Types Being Used: Strings struct USTRING_STRUCT { void *vTable; // pointer to the table int RefNo; // reference counter int Initialized; wchar_t *UnicodeBuffer; // pointer to unicode string char *AsciiBuffer; // pointer to ASCII string int AsciiLength; // length of the ASCII string int Reserved; int Length; // Length of unicode string int LengthMax; // Size of UnicodeBuffer };
  42. Data Types Being Used: Vectors struct VECTOR { void *vTable; // pointer to the table int NumberOfItems; // self-explanatory int MaxSize; // self-explanatory void *vector; // pointer to buffer with elements };  Used to handle the objects:  tasks  triggers  etc.
  43. Using Hex-Rays Decompiler  Identifying constructors/destructors  Usually follow memory allocation  The pointer to object is passed in ecx (sometimes in other registers)  Reconstructing object’s attributes  Creating custom type in “Local Types” for an object  Analyzing object’s methods  Creating custom type in “Local Types” for a table of virtual routines
  44. Using Hex-Rays Decompiler  Identifying constructors/destructors  Usually follow memory allocation  The pointer to object is passed in ecx (sometimes in other registers)  Reconstructing object’s attributes  Creating custom type in “Local Types” for an object  Analyzing object’s methods  Creating custom type in “Local Types” for a table of virtual routines
  45. Reconstructing Object’s Attributes
  46. Reconstructing Object’s Attributes
  47. Reconstructing Object’s Methods
  48. Reconstructing Object’s Methods
  49. Reconstructing Object’s Methods
  50. DEMO
  51. Relationship Stuxnet/Duqu/Gauss/Flamer
  52. Source Code Base Differences
  53. Exploit Implementations Stuxnet Duqu Flame Gauss MS10-046 MS10-046 MS10-046 (LNK) (LNK) (LNK) MS10-061 MS10-061 (Print Spooler) (Print Spooler) MS08-067 MS08-067 (RPC) (RPC) MS10-073 (Win32k.sys) MS10-092 (Task Scheduler) MS11-087 (Win32k.sys)
  54. Exploit Implementations: Stuxnet & Duqu  The payload is injected into processes from both kernel- mode driver & user-mode module  Hooks:  ZwMapViewOfSection  ZwCreateSection  ZwOpenFile  ZwClose  ZwQueryAttributesFile  ZwQuerySection  Executes LoadLibraryW passing as a parameter either:  KERNEL32.DLL.ASLR.XXXXXXXX  SHELL32.DLL.ASLR.XXXXXXXX
  55. Exploit Implementations: Stuxnet & Duqu  The payload is injected into processes from both kernel- mode driver & user-mode module  Hooks:  ZwMapViewOfSection  ZwCreateSection  ZwOpenFile  ZwClose  ZwQueryAttributesFile  ZwQuerySection  Executes LoadLibraryW passing as a parameter either:  KERNEL32.DLL.ASLR.XXXXXXXX  SHELL32.DLL.ASLR.XXXXXXXX
  56. Injection mechanism: Flame  The payload is injected into processes from user-mode module  The injection technique is based on using:  VirtualAllocEx  WriteProcessMemoryReadProcessMemory  CreateRemoteThreadRtlCreateUserThread  The injected module is disguised as shell32.dll  Hooks the entry point of msvcrt.dll by modifying PEB
  57. Injection mechanism: Flame  The payload is injected into processes from user-mode module  The injection technique is based on using:  VirtualAllocEx  WriteProcessMemoryReadProcessMemory  CreateRemoteThreadRtlCreateUserThread  The injected module is disguised as shell32.dll  Hooks the entry point of msvcrt.dll by modifying PEB
  58. Exploit Implementations: Gauss  The payload is injected into processes from user-mode module
  59. Thank you for your attention! Eugene Rodionov Aleksandr Matrosov rodionov@eset.sk matrosov@eset.sk @vxradius @matrosov
Advertisement