SlideShare a Scribd company logo
1 of 58
FURTHERPURE3SKE
MATRIXALGEBRA
Philosophy of the course
• The course does not aim to present a teaching plan for any of
the FP3 topics. This is left to your professional judgement as a
teacher.
• The course is more about presenting each topic in a way that
provides insights into the topic beyond the syllabus.
• In general the course will present the necessary knowledge and
skills to teach the Edexcel FP3 module effectively.
• Relevant examination problem solving techniques will be
demonstrated.
Session structure
• Section 1: Introduction to matrices.
• Section 2: Linear transformations represented by
matrices.
• Section 3: The transpose and inverse of a matrix.
• Section 4: Eigenvalues and eigenvectors.
• Section 5. Symmetric matrices and their
reduction to diagonal form.
• Section 6. Typical examination questions.
•Section 1: Introduction to
matrices.
In mathematics a matrix is a rectangular array of
numbers which represents information (such as routes in
a network or rules to effect a transformation in space).
The array is presented within brackets.
Examples of matrices are:
What is a matrix?



























0
1
4
1
2
1
3
0
2
,
1
3
,
5
4
3
2
This has 2 rows and 2
columns. It is called a
2  2 matrix.
This has 2 rows and 1
column: a 2  1 matrix
3 rows and 3 columns: a
3  3 matrix.
The entries of a matrix
are referred to by their
(row, column) position.
This is the (1, 2) entry.
This is the (2, 1) entry.
This is the (3, 3) entry.
Consider the simultaneous equations:
Another (matrix) way of representing these equations is:
And similarly for the second row:
Such a matrix representation simplifies the study of simultaneous equations
(especially when the number of variables is larger than 2) and, as we’ll see
shortly, also helps us to represent and study transformations of the plane.
How can matrices arise in the classroom?

























32
18
5
4
3
2
y
x
32
5
4
18
3
2




y
x
y
x
  y
x
y
x
y
x




















3
2
3
2
3
2
:
follows
as
column
with the
matrix
the
of
)
(
row
first
he
multiply t
we
LHS
on the
product
he
multiply t
To
  y
x
y
x












5
4
5
4
This following slides were presented in the session on FP1 matrices.
Let T a 90o anticlockwise turn in the x – y plane about
the origin.
How can matrices arise in the classroom?
1
0
to
by
mapped
gets
0
1
point
The 















T
0
1
to
by
mapped
gets
1
0
point
The 















T
to
by
mapped
is
at
vertex
one
with
rectangle
blue
the
Now
T
y
x

















y
x









x
y
at
vertex
one
with
rectangle
red
..the 







x
y
































y
x
y
x
x
y
y
x
T
0
1
1
0
:
means
This  














 

y
x
0
1
1
0
T
under
0
1
of
Image 







T
under
1
0
of
Image 







• The earliest evidence of the use of matrices to study simultaneous equations occurs in
the Jiuzhang suanshu or Nine Chapters on the Mathematical Art . This Chinese text
dates from between 206 BC to 50 AD.
• This set of simultaneous equation problem appears in the Jiuzhang suanshu:
• “There are three types of corn, of which three bundles of the first, two of the second, and
one of the third make 39 measures. Two of the first, three of the second and one of the
third make 34 measures. And one of the first, two of the second and three of the third
make 26 measures. How many measures of corn are contained of one bundle of each
type?”
• In algebraic form this is:
• In the Jiuzhang suanshu this is represented in a equivalent form as:
• The text then proceeds to solve the equations using a method identical to the
Gaussian elimination of the late 17 century.
History of the use of matrices to represent simultaneous equations.
26
3
2
1
34
1
3
2
39
1
2
3









z
y
x
z
y
x
z
y
x
39
34
26
1
1
3
2
3
2
3
2
1
The use of matrices to represent transformations is relatively new. Jan de Witt, a
Dutch mathematician, used them in his 1659 text Elements of Curves.
•Section 2: Linear
transformations represented by
matrices.
•The study of linear transformation is
essentially an extension of the FP1 topic
now extended to 3  3 real matrices.
However it will be instructive to review
the earlier exposition in the following
slides.
The transformation: a 90o anticlockwise rotation about the origin.









y
x
vector
a
Consider 







y
x
    )
1
.(
..........
:
is
rule
then the
,
write
we
If u
kT
u
k
T
y
x
u 









:
to
maps 















x
y
y
x
T








 
x
y









y
x
k
vector
enlarged
he
consider t
Now 







y
x
k
:
to
maps
evidently 















x
y
k
y
x
k
T









x
y
k


































y
x
kT
x
y
k
y
x
k
T
Thus









y
x
1
1


















y
x
y
x









1
1
y
x









y
x
T
1
1









y
x
T
1
1


























y
x
y
x
T
















1
1
and
vectors
wo
Consider t
y
x
y
x
:
shown
ram
parallelog
blue
the
of
vertex
4
on the
lies
sum
Their th
1
1

















y
x
y
x
:
under
and
,
of
images
the
are
ram
parallelog
red
of
vertices
The
1
1
1
1
T
y
x
y
x
y
x
y
x

































.
dimensions
3
with
space
real
to
applies
also
above
analysis
The











































1
1
1
1
:
have
must
we
s
coordinate
of
addition
for
rule
ram
parallelog
By the
y
x
T
y
x
T
y
x
y
x
T
      )
2
.(
..........
is
rule
then the
,
write
we
If
1
1
v
T
u
T
v
u
T
y
x
v
and
y
x
u





















The transformation: a 90o anticlockwise rotation about the origin.
:
ram
parallelog
red
the
onto
ram
parallelog
blue
the
maps
T
Linear transformations of real 3 dimensional space.
numbers.
real
are
and
i.e.
short)
for
space
3
or
(
dimensions
3
with
space
real
in the
;
vectors
any two
and
scalar
any
Consider
1
1
1
3
1
1
1
z
, y
z, x
y,
x,
z
y
x
v
z
y
x
u
k























   
     
v
T
u
T
v
u
T
ii
u
kT
u
k
T
i
T




)
)
:
conditions
two
the
satisfies
that
spaces
3
or
2
of
mation
A transfor
n.
nsformatio
linear tra
a
called
is
n.
nsformatio
linear tra
a
is
origin
about the
space
l
dimensiona
2
of
rotation
ise
anticlockw
90
the
Thus o
Representing a linear transformation of 3 space by a 3  3 matrix.










































z
y
x
T
z
y
x
T 0
0
0
space.
3
in
any vector
be
Let
plane.
the
of
n
nsformatio
linear tra
a
be
Let










z
y
x
T











































z
T
y
x
T 0
0
0
0
0
0
.
1
0
0
,
0
1
0
,
0
0
1
suppose
And
3
3
3
2
2
2
1
1
1































































c
b
a
T
c
b
a
T
c
b
a
T
......
3
2
1
3
2
1
3
2
1
































z
y
x
c
c
c
b
b
b
a
a
a
z
y
x
T

































z
T
y
T
x
T 0
0
0
0
0
0
:
imply
2)
and
1)
Rules

































1
0
0
0
1
0
0
0
1
zT
yT
xT

































3
3
3
2
2
2
1
1
1
c
b
a
z
c
b
a
y
c
b
a
x

















3
2
1
3
2
1
3
2
1
zc
yc
xc
zb
yb
xb
za
ya
xa
.
of
matrix
the
is
3
2
1
3
2
1
3
2
1
T
c
c
c
b
b
b
a
a
a










Linear transformation terminology
space.
3
in
any vector
be
Let
plane.
the
of
n
nsformatio
linear tra
a
be
Let










z
y
x
T
T
z
y
x
c
b
a
c
b
a
z
y
x
T under
of
the
is
say that
we
If









































image
































































3
3
3
2
2
2
1
1
1
1
0
0
,
0
1
0
,
0
0
1
If
c
b
a
T
c
b
a
T
c
b
a
T
.
of
matrix
the
of
columns
the
are
1
0
0
,
0
1
0
,
0
0
1
vectors
the
of
images
The
i.e.
of
matrix
the
slide,
previous
in the
seen
as
Then,
3
2
1
3
2
1
3
2
1
T
c
c
c
b
b
b
a
a
a
T









































Linear transformations. Exercise.








































z
y
x
z
y
x
T
ii
z
x
y
z
y
x
T
i
3
2
:
)
:
)
ns.
nsformatio
linear tra
are
plane
the
of
ations
transform
following
that the
Show


Exercise solutions
space.
3
in
vectors
any two
be
and
let
and
scalar
any
be
Let
1
1
1




















z
y
x
z
y
x
k
Solution:
satisfied
is
1
rule
:
)
































































z
x
y
kT
z
x
y
k
kz
kx
ky
kz
ky
kx
T
z
y
x
k
T
i
satisfied
is
2
rule
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1







































































































z
y
x
T
z
y
x
T
z
x
y
z
x
y
z
z
x
x
y
y
z
z
y
y
x
x
T
z
y
x
z
y
x
T
n.
nsformatio
linear tra
a
is
T

n.
nsformatio
linear tra
a
is
T

satisfied
is
1
rule
:
3
2
3
2
)
































































z
x
y
kT
z
y
x
k
kz
ky
kx
kz
ky
kx
T
z
y
x
k
T
ii
satisfied
is
2
rule
:
3
2
3
2
3
3
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1







































































































z
y
x
T
z
y
x
T
z
y
x
z
y
x
z
z
y
y
x
x
z
z
y
y
x
x
T
z
y
x
z
y
x
T
The matrix of a linear transformation. Example.




















z
x
y
z
y
x
T 
:
n
nsformatio
linear tra
the
of
matrix
the
Find










































1
1
1
0
1
0
0
0
1
:
c
b
a
T
Solution
;
0
0
1
0
1
0
2
2
2










































c
b
a
T
.
1
0
0
1
0
0
3
3
3










































c
b
a
T
.
of
matrix
the
is
1
0
0
0
0
1
0
1
0
3
2
1
3
2
1
3
2
1
T
c
c
c
b
b
b
a
a
a





















The matrix of a linear transformation. Exercise.




















z
y
x
z
y
x
T
3
2
:
n
nsformatio
linear tra
the
of
matrix
the
Find 
The matrix of a linear transformation. Exercise solution




















z
y
x
z
y
x
T
3
2
:
n
nsformatio
linear tra
the
of
matrix
the
Find 
;
0
0
1
0
0
1
:
1
1
1










































c
b
a
T
Solution
;
0
2
0
0
1
0
2
2
2










































c
b
a
T
.
3
0
0
1
0
0
3
3
3










































c
b
a
T
.
of
matrix
the
is
3
0
0
0
2
0
0
0
1
3
2
1
3
2
1
3
2
1
T
c
c
c
b
b
b
a
a
a





















•Section 3: The determinant,
transpose and inverse of a
matrix.
• This section is again essentially an extension
of the FP1 topic on now the inverse of a 3  3
real matrix. However a new concept of the
transpose of a matrix will be needed to
compute the inverse matrix.
• While the exposition for determinant in the
2  2 is easy to understand that of the 3  3
case is beyond the scope of this course
(essentially being a second year undergraduate
pure mathematics module).
• One may therefore ask the question as to why
this particular section is included in the FP3
module.
What is a determinant? The 2  2 case.
T2









d
b
c
a
M
matrix
n with
nsformatio
linear tra
he
Consider t
case.
general
the
to
go
to
need
really
we
this
understand
To
1
1
and
1
0
,
0
1
,
0
0
ices
with vert
square
the
:
square
unit
the
to
to
does
what
examine
will
We
































M
0
1









1
0









1
1









0
0











































































































d
b
c
a
M
d
b
c
a
d
b
c
a
d
c
M
b
a
M
M
1
1
:
i.e.
.
1
1
While
;
1
0
:
;
0
1
:
;
0
0
0
0
:
definition
By









b
a









d
c











d
b
c
a
units.
sq.
1
square
unit
the
of
area
The  ram.
parallelog
red
the
into
ed
transform
is
square
unit
The
blue.
in
shown
...
area
its
half
g
calculatin
first
by
ram
parallelog
red
the
of
area
the
find
We
shown.
rectangle
orange
with the
triangle
blue
the
be
Circumscri
T3.
of
Area
T2
of
Area
T1
of
Area
rectangle
orange
the
of
Area
triangle
blue
the
of
area
The 



T1
T3
ab
b
d
c
a
cd
ad
2
1
)
)(
(
2
1
2
1






2
)
(
2 ab
bc
cd
ab
ad
cd
ad 






2
bc
ad 

).
(
area
has
ram
parallelog
red
ed
transform
The bc
ad 

).
(
area
with
ram
parallelog
a
1into
area
with
square
unit
the
transforms
matrix
n with
nsformatio
linear tra
that the
see
have
We
bc
ad
d
b
c
a
M










).
(
is
matrix
n with
nsformatio
linear tra
the
of
factor
t
enlargemen
area
the
Therefore
bc
ad
d
b
c
a
M 









.
matrix
the
of
the
called
is
)
(
number
The 









d
b
c
a
M
bc
ad t
determinan
:
tion'
multiplica
cross
'
a
by
matrix
the
from
calculated
is
)
(
t
determinan
The









d
b
c
a
bc
ad
.
)
(
det
write
We bc
ad
M 

What is a determinant? The 2  2 case.
:
matrix
has
:
ation
transform
the
seen that
have
We 















x
y
y
x
T  








0
1
1
0
M


















0
1
1
0
0
1
1
0
2
MM
M 




















0
0
1
1
1
0
0
1
0
1
1
0
1
1
0
0









1
0
0
1
matrix.
the
called
is
1
0
0
1
identity








matrices.
for
'1'
a
as
acts
1
0
0
1
because
is
This 








































1
0
0
1
1
0
0
1
i.e.
d
b
c
a
d
b
c
a









d
b
c
a
inverse.
own
its
is
say that
we
1
0
0
1
because
and
reason
For this M
MM 








)
(
1
0
0
1
such that
matrix
a
is
of
inverse
he
say that t
we
,
matrix
general
a
For
1
1
1
A
A
AA
A
A
d
b
c
a
A






















The inverse of a 2  2 matrix.
















x
y
y
x
T 
:
n
nsformatio
linear tra
he
Consider t
.
represents
t
matrix tha
the
of
inverse
the
from
is
determine
y to
easiest wa
the
Generally 1
T
T 
1
written
is
:
;
:
if
of
inverse
the
called
is
)
,
(
)
,
(
:
ation
transform
(linear)
The

















































T
S
y
x
y
x
ST
y
x
y
x
TS
T
y
x
g
y
x
f
y
x
S



.
0
1
1
0
is
inverse
its
and
0
1
1
0
is
represents
t
matrix tha
n the
calculatio
previous
a
From
1



















M
M
T


































x
y
y
x
y
x
T
0
1
1
0
:
means
This 1

The inverse of a transformation in 2 space.
.
is
say
we
exists
If
).
(
1
0
0
1
such that
matrix
a
is
exists,
it
if
,
of
inverse
he
say that t
we
,
matrix
general
a
For
1
1
1
1
singular
-
non
A
A
A
A
AA
A
A
d
b
c
a
A























:
algebra
cumbersome
some
do
to
need
we
determine
To 1

A
:
equation
the
solves
one
then
and
supposes
first
one
Essentialy 1










s
q
r
p
A
.
and
,
,
of
in terms
and
,
,
obtaining
,
1
0
0
1
d
c
b
a
s
r
q
p
s
q
r
p
d
b
c
a















































a
b
c
d
bc
ad
s
q
r
p
A
1
that
is
result
The 1











a
b
c
d
A
det
1




















d
c
c
a
a
b
c
d
A
A
A
on
Verificati
det
1
: 1












bc
ad
bc
ad
bc
ad 0
0
1









1
0
0
1
Note that if a matrix A has det A = 0 then it cannot have an inverse
and is called singular. If det A ≠ 0 then A is called non-singular.
The rule for computing the inverse of a 2  2 matrix.
.
0
det
providing
,
det
1
inverse
the
has 1






















 
bc
ad
A
a
b
c
d
A
A
d
b
c
a
A
.
of
adjugate
the
of
notion
the
introduce
to
need
first
tion we
generalisa
the
enable
To A
.
is
matrix
1
1
this
of
det
the
:
entry
1)
(1,
ough
column thr
and
row
the
Remove
1.
Step
:
follows
as
of
cofactors
matrixof
the
construct
First we
d
d
a
A










Generalising the rule for the 3  3 case: part i)
.
is
matrix
1
1
this
of
det
the
:
entry
2)
(1,
for the
same
the
Do
2.
Step b
b
c 









.
is
matrix
1
1
this
of
det
the
:
entry
1)
(2,
for the
Repeat
3.
Step c
c
b 









.
is
matrix
1
1
this
of
det
the
:
entry
2)
(2,
for the
Repeat
4.
Step a
a
d 









).
short
for
adj
(
of
matrix
adjugate
the
called
is
this
:
:
)
1
(
t
determiman
ing
correspond
with the
of
entries
)
(
the
replace
Lastly
A
A
a
c
b
d
A
m, n n
m












 
)
1
.........(
adj 




















a
c
b
d
A
d
b
c
a
A
Generalising the rule for the 3  3 case: part ii)
)
2
.........(
det
)
,
(
)
,
(
adj
of
row
first
with the
row
first
the
of
product
scalar
The
A
bc
ad
b
d
c
a
A
A






  )
3
.........(
adj
adj
of
transpose
The
entry.
)
(
the
into
entry
)
(
the
making
by
obtained
is
matrix
square
any
of
transpose
The












a
b
c
d
A
A
m
n,
n
m,
T
  )
4
.........(
det
1
adj
det
1
that
see
can
we
Now 1













a
b
c
d
A
A
A
A
T
above.
outlined
steps
four
repeat the
:
same
the
is
matrix
3
3
a
of
inverse
the
computing
for
procedure
The 
The inverse of a 3  3 matrix. Example 1.
.
2
5
1
1
1
2
2
3
1
matrix
the
of
inverse
the
Determine












A
:
are
row
by
entries
nine
The
:
adj
find
First we
: A
Solution
      11
5
1
1
2
det
1
entry
3)
(1,
;
5
2
1
1
2
det
1
entry
2)
(1,
;
3
2
5
1
1
det
1
entry
1)
(1,
4
3
2





































      8
5
1
3
1
det
1
entry
3)
(2,
;
4
2
1
2
1
det
1
entry
2)
(2,
;
4
2
5
2
3
det
1
entry
1)
(2,
5
4
3




































      5
1
2
3
1
det
1
entry
3)
(3,
;
3
1
2
2
1
det
1
entry
2)
(3,
;
1
1
1
2
3
det
1
entry
1)
(3,
6
5
4


































.
5
3
1
8
4
4
11
5
3
adj















 A
4
22
15
3
)
11
,
5
,
3
(
)
2
,
3
,
1
(
adj
row1
row1
det
Then










 A
A
A
 


















5
8
11
3
4
5
1
4
3
4
1
adj
det
1
Finally 1 T
A
A
A
The inverse of a 3  3 matrix. Example 2.
.
4
1
3
1
2
1
4
0
2
matrix
the
of
inverse
the
Determine











A
:
are
row
by
entries
nine
The
:
adj
find
First we
: A
Solution
      5
1
3
2
1
det
1
entry
3)
(1,
;
1
4
3
1
1
det
1
entry
2)
(1,
;
7
4
1
1
2
det
1
entry
1)
(1,
4
3
2



































      2
1
3
0
2
det
1
entry
3)
(2,
;
4
4
3
4
2
det
1
entry
2)
(2,
;
4
4
1
4
0
det
1
entry
1)
(2,
5
4
3



































      4
2
1
0
2
det
1
entry
3)
(3,
;
2
1
1
4
2
det
1
entry
2)
(3,
;
8
1
2
4
0
det
1
entry
1)
(3,
6
5
4


































.
4
2
8
2
4
4
5
1
7
adj
















 A
6
20
14
)
5
,
1
,
7
(
)
4
,
0
,
2
(
adj
row1
row1
det
Then









 A
A
A
 




















4
2
5
2
4
1
8
4
7
6
1
adj
det
1
Finally 1 T
A
A
A
The inverse of a 3  3 matrix. Exercise.
;
1
0
1
1
2
3
5
4
1
;
2
1
3
2
2
2
4
0
3
matrices
following
the
of
inverses
the
Determine























 B
A
The inverse of a 3  3 matrix. Exercise answers.


























































































75
.
1
5
.
0
25
.
0
2
5
.
0
5
.
0
75
.
0
5
.
0
25
.
0
14
4
2
16
4
4
6
4
2
8
1
6
.
0
3
.
0
4
.
0
2
.
0
6
.
0
2
.
0
8
.
0
4
.
0
2
.
0
6
3
4
2
6
2
8
4
2
10
1
;
1
0
1
1
2
3
5
4
1
;
2
1
3
2
2
2
4
0
3
1
1
B
A
B
A
The inverse of a transformation in 3 space.





























































































z
y
z
y
x
z
y
x
z
y
x
T
A
A
A
T
z
y
z
y
x
z
y
x
T
2
1
2
3
2
3
2
1
2
1
2
3
2
3
2
1
1
2
1
2
3
2
3
2
1
1
2
1
2
3
2
3
2
1
2
1
2
3
2
3
2
1
0
0
0
0
1
:
is
ation
transform
inverse
Then the
0
0
0
0
1
is
this
And
.
of
inverse
the
find
Next we
0
0
0
0
1
is
This
.
for
matrix
the
need
First we
:
:
ation
transform
the
of
inverse
the
find
want to
we
Suppose


•Section 4: Eigenvalues and
eigenvectors.
Introduction to eigenvectors and eigenvalues.
 
6
2
3
6
2
3
6
6
2
3
6
2
3
6

























































































































































































the
ing
correspond
an
is
and
the
ing
correspond
an
is
is,
That
.
the
to
ing
correspond
the
are
lines
invariant
on the
origin
the
from
distinct
points
the
And
.
of
the
called
are
and
factors
t
enlargemen
The
12
18
2
3
0
4
9
0
to
ed
transform
is
2
3
And
.
2
3
form
the
of
are
line
on this
Points
.
2
3
is
line
the
,
3
2
case
the
For
12
18
2
3
0
4
9
0
to
ed
transform
is
2
3
And
.
2
3
form
the
of
are
line
on this
Points
.
2
3
is
line
the
,
3
2
case
the
For
3
2
9
4
9
4
providing
line
on the
lie
will
4
9
Now
.
4
9
0
4
9
0
to
ed
transform
is
This
.
0
,
form
the
of
are
line
on this
origin
the
from
distinct
Points
ation.
transform
by this
invariant
left
are
origin
he
through t
lines
which
find
to
aim
We
.
0
4
9
0
is
matrix
whose
space
2
of
n
nsformatio
linear tra
he
Consider t
2
eigenvalue
r
eigenvecto
eigenvalue
r
eigenvecto
s
eigenvalue
rs
eigenvecto
A
s
eigenvalue
a
a
a
a
a
a
a
a
x
y
m
a
a
a
a
a
a
a
a
x
y
m
m
m
m
ma
a
mx
y
a
ma
a
ma
ma
a
a
ma
a
mx
y
A
a
a
a
a
a
a
a
a
Algorithm to find to eigenvalues and eigenvectors.
6.
eigenvalue
with
rs
eigenvecto
are
,
0
,
2
3
So
2
3
6
6
4
9
6
0
4
9
0
have
we
6
case
the
For
6.
eigenvalue
with
rs
eigenvecto
are
,
0
,
2
3
So
2
3
6
6
4
9
6
0
4
9
0
have
we
6
case
the
For
.
6
and
6
are
s
eigenvalue
The
0
36
zero
be
must
t
determinan
its
t,
determinan
of
meaning
the
mind
bearing
ly,
Consequent
area.
destroys
so
and
origin
h the
linethroug
particular
a
in
vectors
all
s
annihilate
0
4
9
0
that
means
This
0
0
0
4
9
0
0
0
0
0
0
4
9
0
0
0
0
4
9
0
Then
eigenvalue
with
0
4
9
0
of
r
eigenvecto
an
be
Let
:
follows
as
derived
is
alogrithm
efficient
An
case.
3
3
in the
especially
efficient
not
is
slide
previous
the
of
method
The
2






































































































































































































































































a
a
a
x
y
y
x
x
y
y
x
y
x
a
a
a
x
y
y
x
x
y
y
x
y
x
y
x
y
x
y
x
y
x
y
x
A
y
x













0000
00000
00000
00000
00000
00000
00000
00000
00000
Eigenvalues and eigenvectors: Example 1 in the 3  3 case.
       
   




















































































































































































continued
3.
eigenvalue
with
rs
eigenvecto
are
,
0
,
0
0
value
zero
-
non
any
can take
and
0
0
0
0
2
4
4
3
8
3
3
3
3
2
4
7
3
5
3
3
2
4
0
7
3
0
0
5
have
we
3
case
the
For
.
eigenvalue
each
to
ing
correspond
rs
eigenvecto
the
Find
2.
Step
.
5
and
7
3,
are
rs
eigenvecto
0
3
7
5
0
2
4
7
3
det
1
0
3
4
0
3
det
1
0
3
2
0
7
det
1
5
.
the
is
this
:
0
3
2
4
0
7
3
0
0
5
det
Solve
1.
Step
3
2
4
0
7
3
0
0
5
of
rs
eigenvecto
and
s
eigenvalue
the
Find
4
3
2
a
a
z
y
x
y
x
y
x
x
z
y
x
z
y
x
y
x
x
z
y
x
z
y
x
equation
stic
characteri
A












0 0
0 0
0
Eigenvalues and eigenvectors: Example 1 in the 3  3 case (contd)
.
a
a
a
a
y
y
y
z
y
x
y
x
z
y
x
z
y
x
y
x
z
y
x
z
y
x
y
x
x
z
y
x
z
y
x
a
a
a
z
y
x
z
y
x
x
x
z
y
x
z
y
x
y
x
x
z
y
x
z
y
x
5
eigenvalue
with
rs
eigenvecto
are
,
0
,
25
.
2
4
25
.
2
4
1
2
and
4
4
1
2
1
and
4
0
0
0
8
2
4
12
3
0
5
5
5
3
2
4
7
3
5
5
3
2
4
0
7
3
0
0
5
have
we
5
case
the
For
7.
eigenvalue
with
rs
eigenvecto
are
,
0
,
2
0
2
and
0
0
0
0
4
2
4
3
12
7
7
7
3
2
4
7
3
5
7
3
2
4
0
7
3
0
0
5
have
we
7
case
the
For











 















































































































































































































Eigenvalues and eigenvectors: Example 2 in the 3  3 case
       
      
      

































































































































































 






















































continued
3.
eigenvalue
with
rs
eigenvecto
are
,
0
,
,
0
5
5
)
3
(
)
2
(
2
0
5
5
)
2
(
3
)
1
(
)
3
........(
)
2
.......(
)
1
.......(
0
0
0
2
3
2
3
2
3
3
3
3
5
3
3
1
1
3
1
5
1
3
1
1
have
we
3
For
.
eigenvalue
each
to
ing
correspond
rs
eigenvecto
the
Find
2.
Step
.
2
and
6
3,
are
rs
eigenvecto
:
0
6
3
2
0
18
9
2
0
36
7
0
42
9
2
4
10
7
0
14
3
3
2
4
6
1
0
1
3
5
1
det
1
3
1
3
1
1
det
1
1
1
1
1
5
det
1
1
0
1
1
3
1
5
1
3
1
1
det
Solve
1.
Step
1
1
3
1
5
1
3
1
1
of
rs
eigenvecto
and
s
eigenvalue
the
Find
2
2
3
2
3
2
4
3
2
a
a
a
a
x
z
x
y
y
x
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
equation
stic
characteri
A



























0
0
0
0
0
Eigenvalues and eigenvectors: Example 2 in the 3  3 case (contd)










































































































































































































































continued
2.
eigenvalue
with
rs
eigenvecto
are
,
0
,
0
,
0
0
20
)
3
(
)
2
(
3
0
20
)
2
(
3
)
1
(
)
3
........(
)
2
.......(
)
1
.......(
0
0
0
3
3
7
3
3
2
2
2
3
5
3
2
1
1
3
1
5
1
3
1
1
have
we
2
For
.
6.
eigenvalue
with
rs
eigenvecto
are
,
0
,
2
2
,
0
4
4
)
3
(
)
2
(
0
4
4
)
2
(
)
1
(
)
3
........(
)
2
.......(
)
1
.......(
0
0
0
5
3
3
5
6
6
6
3
5
3
6
1
1
3
1
5
1
3
1
1
have
we
6
For
.
a
a
a
x
z
y
y
y
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
a
a
a
a
x
y
x
z
z
x
z
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x


0 0
0
Particular eigenvectors.





















 

























































9
4
16
nominate
we
:
5
eigenvalue
with
of
rs
eigenvecto
are
,
0
,
25
.
2
4
1
2
0
nominate
we
:
7
eigenvalue
with
of
rs
eigenvecto
are
,
0
,
2
0
1
0
0
nominate
we
:
3
eigenvalue
with
of
rs
eigenvecto
are
,
0
,
0
0
3
2
4
0
7
3
0
0
5
:
examples
are
Here
case.
each
in
r
eigenvecto
particular
a
nominate
can
However we
.
eigenvalue
each
to
ing
correspond
rs
eigenvecto
of
number
infinite
an
are
There
A
a
a
a
a
A
a
a
a
A
a
a
A 0
0 0
0 0
0 0
Eigenvalues and eigenvectors . Exercise.
.
5
4
3
2
1
3
2
3
1
;
0
3
1
1
2
1
3
2
3
.
eigenvalue
each
to
ing
correspond
r
eigenvecto
particular
a
and
s
eigenvalue
the
determine
matrices
following
For the























 
 B
A
Eigenvalues and eigenvectors. Exercise solutions
       
             
   
 
ely)
(respectiv
1
1
1
;
1
1
1
;
14
1
11
is
4
2;
1;
eigenvalue
r with
eigenvecto
an
:
get
we
or
for
values
e
appropriat
choosing
By
.
;
14
11
0
0
0
2
4
4
;
5
5
3
11
0
0
0
4
3
2
3
2
;
2
3
3
2
;
3
3
3
2
4
;
4
4
4
;
2
2
2
;
3
2
3
2
3
4
;
2
;
1
0
3
1
1
2
1
3
2
3
consider
rs
eigenvecto
compute
To
.
4
and
2
1,
are
rs
eigenvecto
0
3
1
1
0
1
3
1
2
3
)(
1
3
0
1
3
1
2
3
2
3
0
3
1
2
1
det
1
3
1
1
1
det
1
2
3
1
2
det
1
3
0
3
1
1
2
1
3
2
3
det
0
3
1
1
2
1
3
2
3
2
2
4
3
2

































































































































































































































































































































 


































 






















































 

z
x, y
z
x
z
y
z
x
z
y
y
z
y
x
z
y
x
z
y
z
x
z
y
z
y
x
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
equation
stic
characteri
A




















Eigenvalues and eigenvectors. Exercise solutions (contd)
       
            
  
(resp.)
1
1
1
;
3
3
1
;
7
2
2
is
(resp.)
2
;
2
3;
eigenvalue
r with
eigenvecto
an
:
get
we
or
for
values
e
appropriat
choosing
By
.
;
3
7
2
0
0
0
5
5
4
4
;
2
3
3
2
4
3
0
0
0
7
4
3
2
3
2
3
;
3
4
3
2
3
3
2
3
3
;
2
4
3
2
4
3
2
3
4
;
2
2
2
;
2
2
2
;
3
3
3
5
4
3
2
3
2
3
2
;
2
;
3
5
4
3
2
1
3
2
3
1
consider
rs
eigenvecto
compute
To
.
2
and
2
3,
are
rs
eigenvecto
0
3
1
3
0
0
3
6
3
9
)
1
)(
3
(
1
0
9
3
2
9
3
3
3
4
1
0
4
3
1
3
det
1
2
5
3
2
3
det
1
3
5
4
2
1
det
1
1
0
5
4
3
2
1
3
2
3
1
det
5
4
3
2
1
3
2
3
1
2
2
4
3
2
















































































































































































































































































































































































 

































































z
x, y
z
y
y
x
z
y
z
x
y
z
y
x
z
y
y
x
z
y
z
y
x
z
y
x
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
z
y
x
equation
stic
characteri
B




















•Section 5: Symmetric matrices
and their reduction to diagonal
form.
Definition of a symmetric matrix.
matrices.
3
3
symmetric
are
5
4
2
4
1
3
2
3
1
and
0
2
3
2
2
1
3
1
3
So
.
if
symmetric
is
matrix
square
A



























B
A
A
A
A T
Eigenvalues and eigenvectors of a symmetric matrix.
.)
resp
(
1
0
1
2
;
1
2
1
6
;
1
1
1
3
1
0
1
;
1
2
1
;
1
1
1
1
1
3
1
5
1
3
1
1
2)
products).
scalar
take
:
(proof
other
each
lar to
perpendicu
are
rs
eigenvecto
three
these
1)
:
Note
.)
resp
2
and
6
3,
s
eigenvalue
to
ding
(correspon
1
0
1
;
1
2
1
:
1
1
1
are
rs
eigenvecto
Particular
2.
eigenvalue
with
rs
eigenvecto
are
,
0
,
0
6;
eigenvalue
with
rs
eigenvecto
are
,
0
,
2
3;
eigenvalue
with
rs
eigenvecto
are
,
0
,
:
are
These
rs.
eigenvecto
and
s
eigenvalue
its
computed
slide
previous
a
in
have,
we
and
symmetric
evidently
is
1
1
3
1
5
1
3
1
1




























































































































































a
a
a
a
a
a
a
a
a
a
a
A
0
0
0
0
Eigenvalues and eigenvectors of a symmetric matrix. (contd)
     
D
AP
P
DP
AP
P
P
DP
AP
D
P
A










































































































































































1
1
So
exists.
,
0
3
1
1
1
2
1
det
As
then
s
eigenvalue
of
matrix
diagonal
the
as
2
0
0
0
6
0
0
0
3
and
rs
eigenvecto
lar
perpendicu
of
matrix
the
as
1
1
1
0
2
1
1
1
1
write
we
if
So
......(*)
..........
2
0
0
0
6
0
0
0
3
1
1
1
0
2
1
1
1
1
1
1
1
0
2
1
1
1
1
1
1
3
1
5
1
3
1
1
:
writing
as
thesame
is
that this
show
will
arithmetic
Matrix
.)
resp
(
1
0
1
2
;
1
2
1
6
;
1
1
1
3
1
0
1
;
1
2
1
;
1
1
1
1
1
3
1
5
1
3
1
1
satisfy
rs
eigenvecto
and
s
eigenvalue
its
and
symmetric
evidently
is
1
1
3
1
5
1
3
1
1
0
0
0
0
0
0
Diagonalising a symmetric matrix 1.
.
determine
to
required
not
is
one
always,
not
but
Generally,
.
called
is
equation
the
writing
and
,
rs,
eigenvecto
s,
eigenvalue
finding
of
process
the
matrix
symmetric
a
Given
.
s,
eigenvalue
of
matrix
diagonal
the
as
2
0
0
0
6
0
0
0
3
rs,
eigenvecto
orthogonal
of
matrix
the
is
1
1
1
0
2
1
1
1
1
where
,
,
1
1
3
1
5
1
3
1
1
for
that
found
We
1
1
1









































P
A
D
AP
P
D
P
A
D
P
D
AP
P
A
ing
diagonalis
matrix.
symmetric
every
to
applies
This
in
s
eigenvalue
of
order
the
to
correspond
in
rs
eigenvecto
the
of
order
the
and
D
P
0
0
0
0
0
0
Diagonalising a symmetric matrix 2.
matrix.
orthogonal
1.
length
of
rs
eigenvecto
an
called
is
then
1
length
have
rs
eigenvecto
the
If
find
to
need
that we
is
process
ing
diagonalis
in this
difference
The
now
is
equation
ing
diagonalis
the
and
so
1
0
0
0
1
0
0
0
1
2
1
0
2
1
6
1
6
2
6
1
3
1
3
1
3
1
2
1
6
1
3
1
0
6
2
3
1
2
1
6
1
3
1
now
However
s
eigenvalue
of
matrix
diagonal
the
as
2
0
0
0
6
0
0
0
3
where
,
have
still
we
2
1
6
1
3
1
0
6
2
3
1
2
1
6
1
3
1
then
1
length
of
rs
eigenvecto
consider
now
we
If
.
1
1
3
1
5
1
3
1
1
for
ion
considerat
Another
1
1
P
D
AP
P
P
P
PP
D
D
AP
P
P
A
T
T
T

























































































0
0
0
0
0
0
0
•Section 6. Typical examination
questions.











k
A
2
4
2
0
2
4
2
3 (a) Show that det A = 20 – 4k.
(b) Find A– 1
(c) Given that k = 3 find the eigenvalues A.
Example 1.
     
 
 




















































































































































































4
2
4
2
16
3
2
8
4
2
8
4
4
20
1
adj
det
1
4
2
4
2
16
3
2
8
4
2
8
4
0
2
2
3
det
2
2
4
3
det
2
0
4
2
det
2
4
2
3
det
4
4
3
det
2
4
2
det
2
4
0
2
det
4
2
2
det
2
2
0
det
adj
(b)
4
20
16
16
4
12
4
4
8
2
2
4
3
2
4
0
2
det
1
4
4
2
2
det
1
2
2
2
0
det
1
3
det
(a)
:
1
4
3
2
k
k
k
k
A
A
A
k
k
k
k
k
k
k
A
k
k
k
k
k
A
Solution
T
0
0
0 0
0











k
A
2
4
2
0
2
4
2
3 (a) Show that det A = 20 – 4k.
(b) Find A– 1
(c) Given that k = 3 find the eigenvalues of A.
Example 1 (contd)
      
       
    
 
  
   
8.
and
1
are
s
Eigenvalue
0
1
8
1
0
8
7
1
0
20
4
3
1
0
1
16
1
4
4
1
3
0
4
4
4
2
2
2
4
3
3
0
3
2
4
2
2
4
2
3
det
(c)
:
2
2











































































is
equation
stic
Characteri
Solution 0
0
0
0
0
0
0













0
1
9
1
0
2
1
k
k
A
(a) Find values of k for which A is singular.
Given that A is non-singular
(b) Find, in terms of k, A–1
Example 2.
  
 
   










































































 



























 







 








 







































 






















k
k
k
k
k
k
k
k
A
A
A
k
k
k
k
k
k
k
k
k
k
k
k
k
k
A
k
k
A
k
k
A
k
k
k
k
k
k
k
A
Solution
T
9
9
18
9
2
2
6
3
1
adj
det
1
2
9
18
2
9
9
1
0
1
det
0
2
det
1
2
1
det
1
9
1
det
0
9
2
det
0
1
2
1
det
1
9
1
0
det
0
9
0
det
0
1
1
det
adj
(b)
6.
or
3
hen
singular w
is
6
or
3
when
0
det
6
3
18
9
1
9
1
0
det
2
0
9
0
det
0
1
1
det
det
(a)
2
1
2
2
0
0
0
0 0
0











3
4
4
4
5
0
4
0
1
A
(a) Verify that is an eigenvector of A and find the corresponding
eigenvalue.
(b) Show that 9 is another eigenvalue of A and find the corresponding
eigenvector.
(c) Find another eigenvalue and corresponding eigenvector and write down a
matrix P and a diagonal matrix D such that P–1 AP = D.
Example 3.











1
2
2
    
 
       .
9
and
3
,
3
are
rs
eigenvecto
0
9
3
3
0
27
6
3
3
factor
a
is
there
(a)
part
:
0
81
9
9
0
16
80
1
7
9
0
5
4
4
0
1
8
1
0
3
4
4
4
5
0
4
0
1
det
is
The
(b)
3.
eigenvalue
with
of
r
eigenvecto
an
is
1
2
2
1
2
2
3
3
6
6
1
2
2
3
4
4
4
5
0
4
0
1
1
2
2
(a)
2
2
3
2
3
2













































































































































ion
stic equat
characteri
A
A
Soln. 0 0
0
0
0
0











3
4
4
4
5
0
4
0
1
A
(b) Show that 9 is another eigenvalue of A and find the corresponding
eigenvector.
(c) Find another eigenvalue and corresponding eigenvector and write down a
matrix P and a diagonal matrix D such that P–1 AP = D.
Example 3 (contd)
























































































































































































































3
0
0
0
3
0
0
0
9
1
1
1
2
1
1
2
1
2
so
3,
eigenvalue
with
of
r
eigenvecto
an
is
1
2
2
Also
.
3
eigenvalue
with
of
r
eigenvecto
an
is
1
1
1
9;
eigenvalue
with
of
r
eigenvecto
an
is
1
1
2
.
;
2
0
0
0
4
4
4
2
4
2
;
6
4
4
4
4
4
8
3
3
3
;
9
9
9
3
4
4
4
5
4
3
;
9
3
4
4
4
5
0
4
0
1
.
3
and
9
to
ing
correspond
rs
eigenvecto
of
n
Calculatio
(c)
,
(b)
1
AP
P
P
A
A
A
z
y
z
x
z
y
x
z
y
x
z
y
z
x
z
y
x
z
y
z
x
z
y
x
z
y
x
z
y
x
z
y
z
x
z
y
x
z
y
x
z
y
x
Soln.
0
0 0
0
0
0.
>
and
constants
are
and
where
.
0
3
1
4
1
a
c
p, a, b
c
b
a
p
A









 

Given AAT = kI , for some constant k.
(a) Find the values of p, k, a, b and c.
(b) Find det A
Example 4.
      2
57
2
6
1
2
12
4
2
3
1
det
2
2
2
2
2
3
0
3
1
4
1
So
2
,
2
2
,
2
2
8
,
,
2
,
18
25
.
0
,
2
,
18
,
4
,
0
3
3
,
3
,
18
0
0
0
0
0
0
3
4
3
9
3
4
3
18
0
0
0
0
0
0
3
4
3
9
3
4
3
18
.
1
0
4
3
1
0
3
1
4
1
:
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2












































































































































 

A
A
b
c
a
a
a
b
c
a
a
a
a
a
b
c
a
c
b
a
c
b
a
c
a
p
k
k
k
k
c
b
a
pc
a
c
b
a
pc
a
p
p
c
b
a
p
k
k
k
AA
c
b
a
pc
a
c
b
a
pc
a
p
p
c
b
a
p
c
p
b
a
c
b
a
p
AA
Solution
T
T 0
0 0
0
0 0
0
0 0

More Related Content

What's hot

Sequences and series
Sequences and seriesSequences and series
Sequences and seriesMalikahmad105
 
Introduction of matrix
Introduction of matrixIntroduction of matrix
Introduction of matrixPankaj Das
 
Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: IntroductionTayyabSattar5
 
5.5 parallel and_perpendicular_lines
5.5 parallel and_perpendicular_lines5.5 parallel and_perpendicular_lines
5.5 parallel and_perpendicular_linesswartzje
 
Lesson 1B - Graphs and equality
Lesson 1B -  Graphs and equalityLesson 1B -  Graphs and equality
Lesson 1B - Graphs and equalityJonathan Templin
 
Ma121 revised format for course handout
Ma121 revised format for course handoutMa121 revised format for course handout
Ma121 revised format for course handoutTamal Pramanick
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)NirnayMukharjee
 
13 sequences and series
13   sequences and series13   sequences and series
13 sequences and seriesKathManarang
 
Maths presentation
Maths presentationMaths presentation
Maths presentationMEBAD1
 
April 2, 2014
April 2, 2014April 2, 2014
April 2, 2014khyps13
 
(8) Lesson 4.7
(8) Lesson 4.7(8) Lesson 4.7
(8) Lesson 4.7wzuri
 
January 16, 2014
January 16, 2014January 16, 2014
January 16, 2014khyps13
 
Matrix and it's application
Matrix and it's application Matrix and it's application
Matrix and it's application MOHAMMAD AKASH
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operationsPankaj Das
 

What's hot (18)

Sequences and series
Sequences and seriesSequences and series
Sequences and series
 
Introduction of matrix
Introduction of matrixIntroduction of matrix
Introduction of matrix
 
M a t r i k s
M a t r i k sM a t r i k s
M a t r i k s
 
Data Analysis and Algorithms Lecture 1: Introduction
 Data Analysis and Algorithms Lecture 1: Introduction Data Analysis and Algorithms Lecture 1: Introduction
Data Analysis and Algorithms Lecture 1: Introduction
 
5.5 parallel and_perpendicular_lines
5.5 parallel and_perpendicular_lines5.5 parallel and_perpendicular_lines
5.5 parallel and_perpendicular_lines
 
Lesson 1B - Graphs and equality
Lesson 1B -  Graphs and equalityLesson 1B -  Graphs and equality
Lesson 1B - Graphs and equality
 
Ma121 revised format for course handout
Ma121 revised format for course handoutMa121 revised format for course handout
Ma121 revised format for course handout
 
Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)Matrix and its operation (addition, subtraction, multiplication)
Matrix and its operation (addition, subtraction, multiplication)
 
13 sequences and series
13   sequences and series13   sequences and series
13 sequences and series
 
matrices and function ( matrix)
matrices and function ( matrix)matrices and function ( matrix)
matrices and function ( matrix)
 
Maths presentation
Maths presentationMaths presentation
Maths presentation
 
PPT Pola Bilangan
PPT Pola BilanganPPT Pola Bilangan
PPT Pola Bilangan
 
April 2, 2014
April 2, 2014April 2, 2014
April 2, 2014
 
(8) Lesson 4.7
(8) Lesson 4.7(8) Lesson 4.7
(8) Lesson 4.7
 
January 16, 2014
January 16, 2014January 16, 2014
January 16, 2014
 
Matrix and it's application
Matrix and it's application Matrix and it's application
Matrix and it's application
 
Matrix and its operations
Matrix and its operationsMatrix and its operations
Matrix and its operations
 
Maths ppt.....7766
Maths ppt.....7766Maths ppt.....7766
Maths ppt.....7766
 

Similar to Further pure mathematics 3 matrix algebra

Brief review on matrix Algebra for mathematical economics
Brief review on matrix Algebra for mathematical economicsBrief review on matrix Algebra for mathematical economics
Brief review on matrix Algebra for mathematical economicsfelekephiliphos3
 
matrix-algebra-for-engineers (1).pdf
matrix-algebra-for-engineers (1).pdfmatrix-algebra-for-engineers (1).pdf
matrix-algebra-for-engineers (1).pdfShafaqMehmood2
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIADheeraj Kataria
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMohammad Imran
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessKhan Tanjeel Ahmed
 
Determinant
Determinant Determinant
Determinant GpmMaths
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsMaria Fernanda
 
February 17, 2015
February 17, 2015February 17, 2015
February 17, 2015khyps13
 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraMUHAMMADUSMAN93058
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problemsJB Online
 
1539 graphs linear equations and functions
1539 graphs linear equations and functions1539 graphs linear equations and functions
1539 graphs linear equations and functionsDr Fereidoun Dejahang
 
The geometry of three planes in space
The geometry of three planes in spaceThe geometry of three planes in space
The geometry of three planes in spaceTarun Gehlot
 
Lecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airLecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airatutor_te
 
Solving ONE’S interval linear assignment problem
Solving ONE’S interval linear assignment problemSolving ONE’S interval linear assignment problem
Solving ONE’S interval linear assignment problemIJERA Editor
 
Linear equation in one variable PPT.pdf
Linear equation in one variable PPT.pdfLinear equation in one variable PPT.pdf
Linear equation in one variable PPT.pdfmanojindustry
 
Minimization of Boolean Functions
Minimization of Boolean FunctionsMinimization of Boolean Functions
Minimization of Boolean Functionsblaircomp2003
 

Similar to Further pure mathematics 3 matrix algebra (20)

Brief review on matrix Algebra for mathematical economics
Brief review on matrix Algebra for mathematical economicsBrief review on matrix Algebra for mathematical economics
Brief review on matrix Algebra for mathematical economics
 
matrix-algebra-for-engineers (1).pdf
matrix-algebra-for-engineers (1).pdfmatrix-algebra-for-engineers (1).pdf
matrix-algebra-for-engineers (1).pdf
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 
Matrix and its applications by mohammad imran
Matrix and its applications by mohammad imranMatrix and its applications by mohammad imran
Matrix and its applications by mohammad imran
 
Matrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for BusinessMatrix Algebra : Mathematics for Business
Matrix Algebra : Mathematics for Business
 
Determinant
Determinant Determinant
Determinant
 
Linear Algebra and its use in finance:
Linear Algebra and its use in finance:Linear Algebra and its use in finance:
Linear Algebra and its use in finance:
 
Matrices 1
Matrices 1Matrices 1
Matrices 1
 
PhasePlane1-1.pptx
PhasePlane1-1.pptxPhasePlane1-1.pptx
PhasePlane1-1.pptx
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
 
February 17, 2015
February 17, 2015February 17, 2015
February 17, 2015
 
Linear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear AlgebraLinear Algebra Presentation including basic of linear Algebra
Linear Algebra Presentation including basic of linear Algebra
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problems
 
1539 graphs linear equations and functions
1539 graphs linear equations and functions1539 graphs linear equations and functions
1539 graphs linear equations and functions
 
The geometry of three planes in space
The geometry of three planes in spaceThe geometry of three planes in space
The geometry of three planes in space
 
Lecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.airLecture slides stats1.13.l11.air
Lecture slides stats1.13.l11.air
 
Solving ONE’S interval linear assignment problem
Solving ONE’S interval linear assignment problemSolving ONE’S interval linear assignment problem
Solving ONE’S interval linear assignment problem
 
Linear algebra havard university
Linear algebra havard universityLinear algebra havard university
Linear algebra havard university
 
Linear equation in one variable PPT.pdf
Linear equation in one variable PPT.pdfLinear equation in one variable PPT.pdf
Linear equation in one variable PPT.pdf
 
Minimization of Boolean Functions
Minimization of Boolean FunctionsMinimization of Boolean Functions
Minimization of Boolean Functions
 

More from Dennis Almeida

Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Dennis Almeida
 
How to decode a Vigenere code
How to decode a Vigenere codeHow to decode a Vigenere code
How to decode a Vigenere codeDennis Almeida
 
Teach secondary school algebra
Teach secondary school algebraTeach secondary school algebra
Teach secondary school algebraDennis Almeida
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsDennis Almeida
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsDennis Almeida
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systemsDennis Almeida
 
Anecdotes from the history of mathematics ways of selling mathemati
Anecdotes from the history of mathematics ways of selling mathematiAnecdotes from the history of mathematics ways of selling mathemati
Anecdotes from the history of mathematics ways of selling mathematiDennis Almeida
 
Lesson plan equiv fractions
Lesson plan equiv fractionsLesson plan equiv fractions
Lesson plan equiv fractionsDennis Almeida
 
Misconceptions in mathematics
Misconceptions in mathematicsMisconceptions in mathematics
Misconceptions in mathematicsDennis Almeida
 
Teaching equivalent fractions
Teaching equivalent fractionsTeaching equivalent fractions
Teaching equivalent fractionsDennis Almeida
 

More from Dennis Almeida (10)

Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107
 
How to decode a Vigenere code
How to decode a Vigenere codeHow to decode a Vigenere code
How to decode a Vigenere code
 
Teach secondary school algebra
Teach secondary school algebraTeach secondary school algebra
Teach secondary school algebra
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectors
 
Futher pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functionsFuther pure mathematics 3 hyperbolic functions
Futher pure mathematics 3 hyperbolic functions
 
Further pure mathematics 3 coordinate systems
Further pure mathematics 3  coordinate systemsFurther pure mathematics 3  coordinate systems
Further pure mathematics 3 coordinate systems
 
Anecdotes from the history of mathematics ways of selling mathemati
Anecdotes from the history of mathematics ways of selling mathematiAnecdotes from the history of mathematics ways of selling mathemati
Anecdotes from the history of mathematics ways of selling mathemati
 
Lesson plan equiv fractions
Lesson plan equiv fractionsLesson plan equiv fractions
Lesson plan equiv fractions
 
Misconceptions in mathematics
Misconceptions in mathematicsMisconceptions in mathematics
Misconceptions in mathematics
 
Teaching equivalent fractions
Teaching equivalent fractionsTeaching equivalent fractions
Teaching equivalent fractions
 

Recently uploaded

4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 

Recently uploaded (20)

4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 

Further pure mathematics 3 matrix algebra

  • 2. Philosophy of the course • The course does not aim to present a teaching plan for any of the FP3 topics. This is left to your professional judgement as a teacher. • The course is more about presenting each topic in a way that provides insights into the topic beyond the syllabus. • In general the course will present the necessary knowledge and skills to teach the Edexcel FP3 module effectively. • Relevant examination problem solving techniques will be demonstrated.
  • 3. Session structure • Section 1: Introduction to matrices. • Section 2: Linear transformations represented by matrices. • Section 3: The transpose and inverse of a matrix. • Section 4: Eigenvalues and eigenvectors. • Section 5. Symmetric matrices and their reduction to diagonal form. • Section 6. Typical examination questions.
  • 5. In mathematics a matrix is a rectangular array of numbers which represents information (such as routes in a network or rules to effect a transformation in space). The array is presented within brackets. Examples of matrices are: What is a matrix?                            0 1 4 1 2 1 3 0 2 , 1 3 , 5 4 3 2 This has 2 rows and 2 columns. It is called a 2  2 matrix. This has 2 rows and 1 column: a 2  1 matrix 3 rows and 3 columns: a 3  3 matrix. The entries of a matrix are referred to by their (row, column) position. This is the (1, 2) entry. This is the (2, 1) entry. This is the (3, 3) entry.
  • 6. Consider the simultaneous equations: Another (matrix) way of representing these equations is: And similarly for the second row: Such a matrix representation simplifies the study of simultaneous equations (especially when the number of variables is larger than 2) and, as we’ll see shortly, also helps us to represent and study transformations of the plane. How can matrices arise in the classroom?                          32 18 5 4 3 2 y x 32 5 4 18 3 2     y x y x   y x y x y x                     3 2 3 2 3 2 : follows as column with the matrix the of ) ( row first he multiply t we LHS on the product he multiply t To   y x y x             5 4 5 4 This following slides were presented in the session on FP1 matrices.
  • 7. Let T a 90o anticlockwise turn in the x – y plane about the origin. How can matrices arise in the classroom? 1 0 to by mapped gets 0 1 point The                 T 0 1 to by mapped gets 1 0 point The                 T to by mapped is at vertex one with rectangle blue the Now T y x                  y x          x y at vertex one with rectangle red ..the         x y                                 y x y x x y y x T 0 1 1 0 : means This                    y x 0 1 1 0 T under 0 1 of Image         T under 1 0 of Image        
  • 8. • The earliest evidence of the use of matrices to study simultaneous equations occurs in the Jiuzhang suanshu or Nine Chapters on the Mathematical Art . This Chinese text dates from between 206 BC to 50 AD. • This set of simultaneous equation problem appears in the Jiuzhang suanshu: • “There are three types of corn, of which three bundles of the first, two of the second, and one of the third make 39 measures. Two of the first, three of the second and one of the third make 34 measures. And one of the first, two of the second and three of the third make 26 measures. How many measures of corn are contained of one bundle of each type?” • In algebraic form this is: • In the Jiuzhang suanshu this is represented in a equivalent form as: • The text then proceeds to solve the equations using a method identical to the Gaussian elimination of the late 17 century. History of the use of matrices to represent simultaneous equations. 26 3 2 1 34 1 3 2 39 1 2 3          z y x z y x z y x 39 34 26 1 1 3 2 3 2 3 2 1 The use of matrices to represent transformations is relatively new. Jan de Witt, a Dutch mathematician, used them in his 1659 text Elements of Curves.
  • 9. •Section 2: Linear transformations represented by matrices.
  • 10. •The study of linear transformation is essentially an extension of the FP1 topic now extended to 3  3 real matrices. However it will be instructive to review the earlier exposition in the following slides.
  • 11. The transformation: a 90o anticlockwise rotation about the origin.          y x vector a Consider         y x     ) 1 .( .......... : is rule then the , write we If u kT u k T y x u           : to maps                 x y y x T           x y          y x k vector enlarged he consider t Now         y x k : to maps evidently                 x y k y x k T          x y k                                   y x kT x y k y x k T Thus
  • 12.          y x 1 1                   y x y x          1 1 y x          y x T 1 1          y x T 1 1                           y x y x T                 1 1 and vectors wo Consider t y x y x : shown ram parallelog blue the of vertex 4 on the lies sum Their th 1 1                  y x y x : under and , of images the are ram parallelog red of vertices The 1 1 1 1 T y x y x y x y x                                  . dimensions 3 with space real to applies also above analysis The                                            1 1 1 1 : have must we s coordinate of addition for rule ram parallelog By the y x T y x T y x y x T       ) 2 .( .......... is rule then the , write we If 1 1 v T u T v u T y x v and y x u                      The transformation: a 90o anticlockwise rotation about the origin. : ram parallelog red the onto ram parallelog blue the maps T
  • 13. Linear transformations of real 3 dimensional space. numbers. real are and i.e. short) for space 3 or ( dimensions 3 with space real in the ; vectors any two and scalar any Consider 1 1 1 3 1 1 1 z , y z, x y, x, z y x v z y x u k                                  v T u T v u T ii u kT u k T i T     ) ) : conditions two the satisfies that spaces 3 or 2 of mation A transfor n. nsformatio linear tra a called is n. nsformatio linear tra a is origin about the space l dimensiona 2 of rotation ise anticlockw 90 the Thus o
  • 14. Representing a linear transformation of 3 space by a 3  3 matrix.                                           z y x T z y x T 0 0 0 space. 3 in any vector be Let plane. the of n nsformatio linear tra a be Let           z y x T                                            z T y x T 0 0 0 0 0 0 . 1 0 0 , 0 1 0 , 0 0 1 suppose And 3 3 3 2 2 2 1 1 1                                                                c b a T c b a T c b a T ...... 3 2 1 3 2 1 3 2 1                                 z y x c c c b b b a a a z y x T                                  z T y T x T 0 0 0 0 0 0 : imply 2) and 1) Rules                                  1 0 0 0 1 0 0 0 1 zT yT xT                                  3 3 3 2 2 2 1 1 1 c b a z c b a y c b a x                  3 2 1 3 2 1 3 2 1 zc yc xc zb yb xb za ya xa . of matrix the is 3 2 1 3 2 1 3 2 1 T c c c b b b a a a          
  • 15. Linear transformation terminology space. 3 in any vector be Let plane. the of n nsformatio linear tra a be Let           z y x T T z y x c b a c b a z y x T under of the is say that we If                                          image                                                                 3 3 3 2 2 2 1 1 1 1 0 0 , 0 1 0 , 0 0 1 If c b a T c b a T c b a T . of matrix the of columns the are 1 0 0 , 0 1 0 , 0 0 1 vectors the of images The i.e. of matrix the slide, previous in the seen as Then, 3 2 1 3 2 1 3 2 1 T c c c b b b a a a T                                         
  • 17. Exercise solutions space. 3 in vectors any two be and let and scalar any be Let 1 1 1                     z y x z y x k Solution: satisfied is 1 rule : )                                                                 z x y kT z x y k kz kx ky kz ky kx T z y x k T i satisfied is 2 rule : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                        z y x T z y x T z x y z x y z z x x y y z z y y x x T z y x z y x T n. nsformatio linear tra a is T  n. nsformatio linear tra a is T  satisfied is 1 rule : 3 2 3 2 )                                                                 z x y kT z y x k kz ky kx kz ky kx T z y x k T ii satisfied is 2 rule : 3 2 3 2 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                        z y x T z y x T z y x z y x z z y y x x z z y y x x T z y x z y x T
  • 18. The matrix of a linear transformation. Example.                     z x y z y x T  : n nsformatio linear tra the of matrix the Find                                           1 1 1 0 1 0 0 0 1 : c b a T Solution ; 0 0 1 0 1 0 2 2 2                                           c b a T . 1 0 0 1 0 0 3 3 3                                           c b a T . of matrix the is 1 0 0 0 0 1 0 1 0 3 2 1 3 2 1 3 2 1 T c c c b b b a a a                     
  • 19. The matrix of a linear transformation. Exercise.                     z y x z y x T 3 2 : n nsformatio linear tra the of matrix the Find 
  • 20. The matrix of a linear transformation. Exercise solution                     z y x z y x T 3 2 : n nsformatio linear tra the of matrix the Find  ; 0 0 1 0 0 1 : 1 1 1                                           c b a T Solution ; 0 2 0 0 1 0 2 2 2                                           c b a T . 3 0 0 1 0 0 3 3 3                                           c b a T . of matrix the is 3 0 0 0 2 0 0 0 1 3 2 1 3 2 1 3 2 1 T c c c b b b a a a                     
  • 21. •Section 3: The determinant, transpose and inverse of a matrix.
  • 22. • This section is again essentially an extension of the FP1 topic on now the inverse of a 3  3 real matrix. However a new concept of the transpose of a matrix will be needed to compute the inverse matrix. • While the exposition for determinant in the 2  2 is easy to understand that of the 3  3 case is beyond the scope of this course (essentially being a second year undergraduate pure mathematics module). • One may therefore ask the question as to why this particular section is included in the FP3 module.
  • 23. What is a determinant? The 2  2 case. T2          d b c a M matrix n with nsformatio linear tra he Consider t case. general the to go to need really we this understand To 1 1 and 1 0 , 0 1 , 0 0 ices with vert square the : square unit the to to does what examine will We                                 M 0 1          1 0          1 1          0 0                                                                                                            d b c a M d b c a d b c a d c M b a M M 1 1 : i.e. . 1 1 While ; 1 0 : ; 0 1 : ; 0 0 0 0 : definition By          b a          d c            d b c a units. sq. 1 square unit the of area The  ram. parallelog red the into ed transform is square unit The blue. in shown ... area its half g calculatin first by ram parallelog red the of area the find We shown. rectangle orange with the triangle blue the be Circumscri T3. of Area T2 of Area T1 of Area rectangle orange the of Area triangle blue the of area The     T1 T3 ab b d c a cd ad 2 1 ) )( ( 2 1 2 1       2 ) ( 2 ab bc cd ab ad cd ad        2 bc ad   ). ( area has ram parallelog red ed transform The bc ad  
  • 24. ). ( area with ram parallelog a 1into area with square unit the transforms matrix n with nsformatio linear tra that the see have We bc ad d b c a M           ). ( is matrix n with nsformatio linear tra the of factor t enlargemen area the Therefore bc ad d b c a M           . matrix the of the called is ) ( number The           d b c a M bc ad t determinan : tion' multiplica cross ' a by matrix the from calculated is ) ( t determinan The          d b c a bc ad . ) ( det write We bc ad M   What is a determinant? The 2  2 case.
  • 25. : matrix has : ation transform the seen that have We                 x y y x T           0 1 1 0 M                   0 1 1 0 0 1 1 0 2 MM M                      0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0          1 0 0 1 matrix. the called is 1 0 0 1 identity         matrices. for '1' a as acts 1 0 0 1 because is This                                          1 0 0 1 1 0 0 1 i.e. d b c a d b c a          d b c a inverse. own its is say that we 1 0 0 1 because and reason For this M MM          ) ( 1 0 0 1 such that matrix a is of inverse he say that t we , matrix general a For 1 1 1 A A AA A A d b c a A                       The inverse of a 2  2 matrix.
  • 26.                 x y y x T  : n nsformatio linear tra he Consider t . represents t matrix tha the of inverse the from is determine y to easiest wa the Generally 1 T T  1 written is : ; : if of inverse the called is ) , ( ) , ( : ation transform (linear) The                                                  T S y x y x ST y x y x TS T y x g y x f y x S    . 0 1 1 0 is inverse its and 0 1 1 0 is represents t matrix tha n the calculatio previous a From 1                    M M T                                   x y y x y x T 0 1 1 0 : means This 1  The inverse of a transformation in 2 space.
  • 27. . is say we exists If ). ( 1 0 0 1 such that matrix a is exists, it if , of inverse he say that t we , matrix general a For 1 1 1 1 singular - non A A A A AA A A d b c a A                        : algebra cumbersome some do to need we determine To 1  A : equation the solves one then and supposes first one Essentialy 1           s q r p A . and , , of in terms and , , obtaining , 1 0 0 1 d c b a s r q p s q r p d b c a                                                a b c d bc ad s q r p A 1 that is result The 1            a b c d A det 1                     d c c a a b c d A A A on Verificati det 1 : 1             bc ad bc ad bc ad 0 0 1          1 0 0 1 Note that if a matrix A has det A = 0 then it cannot have an inverse and is called singular. If det A ≠ 0 then A is called non-singular. The rule for computing the inverse of a 2  2 matrix.
  • 28. . 0 det providing , det 1 inverse the has 1                         bc ad A a b c d A A d b c a A . of adjugate the of notion the introduce to need first tion we generalisa the enable To A . is matrix 1 1 this of det the : entry 1) (1, ough column thr and row the Remove 1. Step : follows as of cofactors matrixof the construct First we d d a A           Generalising the rule for the 3  3 case: part i) . is matrix 1 1 this of det the : entry 2) (1, for the same the Do 2. Step b b c           . is matrix 1 1 this of det the : entry 1) (2, for the Repeat 3. Step c c b           . is matrix 1 1 this of det the : entry 2) (2, for the Repeat 4. Step a a d           ). short for adj ( of matrix adjugate the called is this : : ) 1 ( t determiman ing correspond with the of entries ) ( the replace Lastly A A a c b d A m, n n m              
  • 29. ) 1 .........( adj                      a c b d A d b c a A Generalising the rule for the 3  3 case: part ii) ) 2 .........( det ) , ( ) , ( adj of row first with the row first the of product scalar The A bc ad b d c a A A         ) 3 .........( adj adj of transpose The entry. ) ( the into entry ) ( the making by obtained is matrix square any of transpose The             a b c d A A m n, n m, T   ) 4 .........( det 1 adj det 1 that see can we Now 1              a b c d A A A A T above. outlined steps four repeat the : same the is matrix 3 3 a of inverse the computing for procedure The 
  • 30. The inverse of a 3  3 matrix. Example 1. . 2 5 1 1 1 2 2 3 1 matrix the of inverse the Determine             A : are row by entries nine The : adj find First we : A Solution       11 5 1 1 2 det 1 entry 3) (1, ; 5 2 1 1 2 det 1 entry 2) (1, ; 3 2 5 1 1 det 1 entry 1) (1, 4 3 2                                            8 5 1 3 1 det 1 entry 3) (2, ; 4 2 1 2 1 det 1 entry 2) (2, ; 4 2 5 2 3 det 1 entry 1) (2, 5 4 3                                           5 1 2 3 1 det 1 entry 3) (3, ; 3 1 2 2 1 det 1 entry 2) (3, ; 1 1 1 2 3 det 1 entry 1) (3, 6 5 4                                   . 5 3 1 8 4 4 11 5 3 adj                 A 4 22 15 3 ) 11 , 5 , 3 ( ) 2 , 3 , 1 ( adj row1 row1 det Then            A A A                     5 8 11 3 4 5 1 4 3 4 1 adj det 1 Finally 1 T A A A
  • 31. The inverse of a 3  3 matrix. Example 2. . 4 1 3 1 2 1 4 0 2 matrix the of inverse the Determine            A : are row by entries nine The : adj find First we : A Solution       5 1 3 2 1 det 1 entry 3) (1, ; 1 4 3 1 1 det 1 entry 2) (1, ; 7 4 1 1 2 det 1 entry 1) (1, 4 3 2                                          2 1 3 0 2 det 1 entry 3) (2, ; 4 4 3 4 2 det 1 entry 2) (2, ; 4 4 1 4 0 det 1 entry 1) (2, 5 4 3                                          4 2 1 0 2 det 1 entry 3) (3, ; 2 1 1 4 2 det 1 entry 2) (3, ; 8 1 2 4 0 det 1 entry 1) (3, 6 5 4                                   . 4 2 8 2 4 4 5 1 7 adj                  A 6 20 14 ) 5 , 1 , 7 ( ) 4 , 0 , 2 ( adj row1 row1 det Then           A A A                       4 2 5 2 4 1 8 4 7 6 1 adj det 1 Finally 1 T A A A
  • 32. The inverse of a 3  3 matrix. Exercise. ; 1 0 1 1 2 3 5 4 1 ; 2 1 3 2 2 2 4 0 3 matrices following the of inverses the Determine                         B A
  • 33. The inverse of a 3  3 matrix. Exercise answers.                                                                                           75 . 1 5 . 0 25 . 0 2 5 . 0 5 . 0 75 . 0 5 . 0 25 . 0 14 4 2 16 4 4 6 4 2 8 1 6 . 0 3 . 0 4 . 0 2 . 0 6 . 0 2 . 0 8 . 0 4 . 0 2 . 0 6 3 4 2 6 2 8 4 2 10 1 ; 1 0 1 1 2 3 5 4 1 ; 2 1 3 2 2 2 4 0 3 1 1 B A B A
  • 34. The inverse of a transformation in 3 space.                                                                                              z y z y x z y x z y x T A A A T z y z y x z y x T 2 1 2 3 2 3 2 1 2 1 2 3 2 3 2 1 1 2 1 2 3 2 3 2 1 1 2 1 2 3 2 3 2 1 2 1 2 3 2 3 2 1 0 0 0 0 1 : is ation transform inverse Then the 0 0 0 0 1 is this And . of inverse the find Next we 0 0 0 0 1 is This . for matrix the need First we : : ation transform the of inverse the find want to we Suppose  
  • 35. •Section 4: Eigenvalues and eigenvectors.
  • 36. Introduction to eigenvectors and eigenvalues.   6 2 3 6 2 3 6 6 2 3 6 2 3 6                                                                                                                                                                                          the ing correspond an is and the ing correspond an is is, That . the to ing correspond the are lines invariant on the origin the from distinct points the And . of the called are and factors t enlargemen The 12 18 2 3 0 4 9 0 to ed transform is 2 3 And . 2 3 form the of are line on this Points . 2 3 is line the , 3 2 case the For 12 18 2 3 0 4 9 0 to ed transform is 2 3 And . 2 3 form the of are line on this Points . 2 3 is line the , 3 2 case the For 3 2 9 4 9 4 providing line on the lie will 4 9 Now . 4 9 0 4 9 0 to ed transform is This . 0 , form the of are line on this origin the from distinct Points ation. transform by this invariant left are origin he through t lines which find to aim We . 0 4 9 0 is matrix whose space 2 of n nsformatio linear tra he Consider t 2 eigenvalue r eigenvecto eigenvalue r eigenvecto s eigenvalue rs eigenvecto A s eigenvalue a a a a a a a a x y m a a a a a a a a x y m m m m ma a mx y a ma a ma ma a a ma a mx y A a a a a a a a a
  • 37. Algorithm to find to eigenvalues and eigenvectors. 6. eigenvalue with rs eigenvecto are , 0 , 2 3 So 2 3 6 6 4 9 6 0 4 9 0 have we 6 case the For 6. eigenvalue with rs eigenvecto are , 0 , 2 3 So 2 3 6 6 4 9 6 0 4 9 0 have we 6 case the For . 6 and 6 are s eigenvalue The 0 36 zero be must t determinan its t, determinan of meaning the mind bearing ly, Consequent area. destroys so and origin h the linethroug particular a in vectors all s annihilate 0 4 9 0 that means This 0 0 0 4 9 0 0 0 0 0 0 4 9 0 0 0 0 4 9 0 Then eigenvalue with 0 4 9 0 of r eigenvecto an be Let : follows as derived is alogrithm efficient An case. 3 3 in the especially efficient not is slide previous the of method The 2                                                                                                                                                                                                                                                                       a a a x y y x x y y x y x a a a x y y x x y y x y x y x y x y x y x y x A y x              0000 00000 00000 00000 00000 00000 00000 00000 00000
  • 38. Eigenvalues and eigenvectors: Example 1 in the 3  3 case.                                                                                                                                                                                                 continued 3. eigenvalue with rs eigenvecto are , 0 , 0 0 value zero - non any can take and 0 0 0 0 2 4 4 3 8 3 3 3 3 2 4 7 3 5 3 3 2 4 0 7 3 0 0 5 have we 3 case the For . eigenvalue each to ing correspond rs eigenvecto the Find 2. Step . 5 and 7 3, are rs eigenvecto 0 3 7 5 0 2 4 7 3 det 1 0 3 4 0 3 det 1 0 3 2 0 7 det 1 5 . the is this : 0 3 2 4 0 7 3 0 0 5 det Solve 1. Step 3 2 4 0 7 3 0 0 5 of rs eigenvecto and s eigenvalue the Find 4 3 2 a a z y x y x y x x z y x z y x y x x z y x z y x equation stic characteri A             0 0 0 0 0
  • 39. Eigenvalues and eigenvectors: Example 1 in the 3  3 case (contd) . a a a a y y y z y x y x z y x z y x y x z y x z y x y x x z y x z y x a a a z y x z y x x x z y x z y x y x x z y x z y x 5 eigenvalue with rs eigenvecto are , 0 , 25 . 2 4 25 . 2 4 1 2 and 4 4 1 2 1 and 4 0 0 0 8 2 4 12 3 0 5 5 5 3 2 4 7 3 5 5 3 2 4 0 7 3 0 0 5 have we 5 case the For 7. eigenvalue with rs eigenvecto are , 0 , 2 0 2 and 0 0 0 0 4 2 4 3 12 7 7 7 3 2 4 7 3 5 7 3 2 4 0 7 3 0 0 5 have we 7 case the For                                                                                                                                                                                                                            
  • 40. Eigenvalues and eigenvectors: Example 2 in the 3  3 case                                                                                                                                                                                                                                                continued 3. eigenvalue with rs eigenvecto are , 0 , , 0 5 5 ) 3 ( ) 2 ( 2 0 5 5 ) 2 ( 3 ) 1 ( ) 3 ........( ) 2 .......( ) 1 .......( 0 0 0 2 3 2 3 2 3 3 3 3 5 3 3 1 1 3 1 5 1 3 1 1 have we 3 For . eigenvalue each to ing correspond rs eigenvecto the Find 2. Step . 2 and 6 3, are rs eigenvecto : 0 6 3 2 0 18 9 2 0 36 7 0 42 9 2 4 10 7 0 14 3 3 2 4 6 1 0 1 3 5 1 det 1 3 1 3 1 1 det 1 1 1 1 1 5 det 1 1 0 1 1 3 1 5 1 3 1 1 det Solve 1. Step 1 1 3 1 5 1 3 1 1 of rs eigenvecto and s eigenvalue the Find 2 2 3 2 3 2 4 3 2 a a a a x z x y y x y x z y x z y x z y x z y x z y x z y x z y x z y x z y x equation stic characteri A                            0 0 0 0 0
  • 41. Eigenvalues and eigenvectors: Example 2 in the 3  3 case (contd)                                                                                                                                                                                                                                           continued 2. eigenvalue with rs eigenvecto are , 0 , 0 , 0 0 20 ) 3 ( ) 2 ( 3 0 20 ) 2 ( 3 ) 1 ( ) 3 ........( ) 2 .......( ) 1 .......( 0 0 0 3 3 7 3 3 2 2 2 3 5 3 2 1 1 3 1 5 1 3 1 1 have we 2 For . 6. eigenvalue with rs eigenvecto are , 0 , 2 2 , 0 4 4 ) 3 ( ) 2 ( 0 4 4 ) 2 ( ) 1 ( ) 3 ........( ) 2 .......( ) 1 .......( 0 0 0 5 3 3 5 6 6 6 3 5 3 6 1 1 3 1 5 1 3 1 1 have we 6 For . a a a x z y y y z y x z y x z y x z y x z y x z y x z y x z y x z y x a a a a x y x z z x z x z y x z y x z y x z y x z y x z y x z y x z y x z y x   0 0 0
  • 43. Eigenvalues and eigenvectors . Exercise. . 5 4 3 2 1 3 2 3 1 ; 0 3 1 1 2 1 3 2 3 . eigenvalue each to ing correspond r eigenvecto particular a and s eigenvalue the determine matrices following For the                           B A
  • 44. Eigenvalues and eigenvectors. Exercise solutions                             ely) (respectiv 1 1 1 ; 1 1 1 ; 14 1 11 is 4 2; 1; eigenvalue r with eigenvecto an : get we or for values e appropriat choosing By . ; 14 11 0 0 0 2 4 4 ; 5 5 3 11 0 0 0 4 3 2 3 2 ; 2 3 3 2 ; 3 3 3 2 4 ; 4 4 4 ; 2 2 2 ; 3 2 3 2 3 4 ; 2 ; 1 0 3 1 1 2 1 3 2 3 consider rs eigenvecto compute To . 4 and 2 1, are rs eigenvecto 0 3 1 1 0 1 3 1 2 3 )( 1 3 0 1 3 1 2 3 2 3 0 3 1 2 1 det 1 3 1 1 1 det 1 2 3 1 2 det 1 3 0 3 1 1 2 1 3 2 3 det 0 3 1 1 2 1 3 2 3 2 2 4 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                 z x, y z x z y z x z y y z y x z y x z y z x z y z y x y x z y x z y x z y x z y x z x z y x z y x z y x z y x z y x z y x z y x y x z y x z y x z y x z y x z y x z y x equation stic characteri A                    
  • 45. Eigenvalues and eigenvectors. Exercise solutions (contd)                         (resp.) 1 1 1 ; 3 3 1 ; 7 2 2 is (resp.) 2 ; 2 3; eigenvalue r with eigenvecto an : get we or for values e appropriat choosing By . ; 3 7 2 0 0 0 5 5 4 4 ; 2 3 3 2 4 3 0 0 0 7 4 3 2 3 2 3 ; 3 4 3 2 3 3 2 3 3 ; 2 4 3 2 4 3 2 3 4 ; 2 2 2 ; 2 2 2 ; 3 3 3 5 4 3 2 3 2 3 2 ; 2 ; 3 5 4 3 2 1 3 2 3 1 consider rs eigenvecto compute To . 2 and 2 3, are rs eigenvecto 0 3 1 3 0 0 3 6 3 9 ) 1 )( 3 ( 1 0 9 3 2 9 3 3 3 4 1 0 4 3 1 3 det 1 2 5 3 2 3 det 1 3 5 4 2 1 det 1 1 0 5 4 3 2 1 3 2 3 1 det 5 4 3 2 1 3 2 3 1 2 2 4 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                    z x, y z y y x z y z x y z y x z y y x z y z y x z y x y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x z y x equation stic characteri B                    
  • 46. •Section 5: Symmetric matrices and their reduction to diagonal form.
  • 47. Definition of a symmetric matrix. matrices. 3 3 symmetric are 5 4 2 4 1 3 2 3 1 and 0 2 3 2 2 1 3 1 3 So . if symmetric is matrix square A                            B A A A A T
  • 48. Eigenvalues and eigenvectors of a symmetric matrix. .) resp ( 1 0 1 2 ; 1 2 1 6 ; 1 1 1 3 1 0 1 ; 1 2 1 ; 1 1 1 1 1 3 1 5 1 3 1 1 2) products). scalar take : (proof other each lar to perpendicu are rs eigenvecto three these 1) : Note .) resp 2 and 6 3, s eigenvalue to ding (correspon 1 0 1 ; 1 2 1 : 1 1 1 are rs eigenvecto Particular 2. eigenvalue with rs eigenvecto are , 0 , 0 6; eigenvalue with rs eigenvecto are , 0 , 2 3; eigenvalue with rs eigenvecto are , 0 , : are These rs. eigenvecto and s eigenvalue its computed slide previous a in have, we and symmetric evidently is 1 1 3 1 5 1 3 1 1                                                                                                                                                             a a a a a a a a a a a A 0 0 0 0
  • 49. Eigenvalues and eigenvectors of a symmetric matrix. (contd)       D AP P DP AP P P DP AP D P A                                                                                                                                                                           1 1 So exists. , 0 3 1 1 1 2 1 det As then s eigenvalue of matrix diagonal the as 2 0 0 0 6 0 0 0 3 and rs eigenvecto lar perpendicu of matrix the as 1 1 1 0 2 1 1 1 1 write we if So ......(*) .......... 2 0 0 0 6 0 0 0 3 1 1 1 0 2 1 1 1 1 1 1 1 0 2 1 1 1 1 1 1 3 1 5 1 3 1 1 : writing as thesame is that this show will arithmetic Matrix .) resp ( 1 0 1 2 ; 1 2 1 6 ; 1 1 1 3 1 0 1 ; 1 2 1 ; 1 1 1 1 1 3 1 5 1 3 1 1 satisfy rs eigenvecto and s eigenvalue its and symmetric evidently is 1 1 3 1 5 1 3 1 1 0 0 0 0 0 0
  • 50. Diagonalising a symmetric matrix 1. . determine to required not is one always, not but Generally, . called is equation the writing and , rs, eigenvecto s, eigenvalue finding of process the matrix symmetric a Given . s, eigenvalue of matrix diagonal the as 2 0 0 0 6 0 0 0 3 rs, eigenvecto orthogonal of matrix the is 1 1 1 0 2 1 1 1 1 where , , 1 1 3 1 5 1 3 1 1 for that found We 1 1 1                                          P A D AP P D P A D P D AP P A ing diagonalis matrix. symmetric every to applies This in s eigenvalue of order the to correspond in rs eigenvecto the of order the and D P 0 0 0 0 0 0
  • 51. Diagonalising a symmetric matrix 2. matrix. orthogonal 1. length of rs eigenvecto an called is then 1 length have rs eigenvecto the If find to need that we is process ing diagonalis in this difference The now is equation ing diagonalis the and so 1 0 0 0 1 0 0 0 1 2 1 0 2 1 6 1 6 2 6 1 3 1 3 1 3 1 2 1 6 1 3 1 0 6 2 3 1 2 1 6 1 3 1 now However s eigenvalue of matrix diagonal the as 2 0 0 0 6 0 0 0 3 where , have still we 2 1 6 1 3 1 0 6 2 3 1 2 1 6 1 3 1 then 1 length of rs eigenvecto consider now we If . 1 1 3 1 5 1 3 1 1 for ion considerat Another 1 1 P D AP P P P PP D D AP P P A T T T                                                                                          0 0 0 0 0 0 0
  • 52. •Section 6. Typical examination questions.
  • 53.            k A 2 4 2 0 2 4 2 3 (a) Show that det A = 20 – 4k. (b) Find A– 1 (c) Given that k = 3 find the eigenvalues A. Example 1.                                                                                                                                                                                               4 2 4 2 16 3 2 8 4 2 8 4 4 20 1 adj det 1 4 2 4 2 16 3 2 8 4 2 8 4 0 2 2 3 det 2 2 4 3 det 2 0 4 2 det 2 4 2 3 det 4 4 3 det 2 4 2 det 2 4 0 2 det 4 2 2 det 2 2 0 det adj (b) 4 20 16 16 4 12 4 4 8 2 2 4 3 2 4 0 2 det 1 4 4 2 2 det 1 2 2 2 0 det 1 3 det (a) : 1 4 3 2 k k k k A A A k k k k k k k A k k k k k A Solution T 0 0 0 0 0
  • 54.            k A 2 4 2 0 2 4 2 3 (a) Show that det A = 20 – 4k. (b) Find A– 1 (c) Given that k = 3 find the eigenvalues of A. Example 1 (contd)                              8. and 1 are s Eigenvalue 0 1 8 1 0 8 7 1 0 20 4 3 1 0 1 16 1 4 4 1 3 0 4 4 4 2 2 2 4 3 3 0 3 2 4 2 2 4 2 3 det (c) : 2 2                                                                            is equation stic Characteri Solution 0 0 0 0 0 0 0
  • 55.              0 1 9 1 0 2 1 k k A (a) Find values of k for which A is singular. Given that A is non-singular (b) Find, in terms of k, A–1 Example 2.                                                                                                                                                                                                     k k k k k k k k A A A k k k k k k k k k k k k k k A k k A k k A k k k k k k k A Solution T 9 9 18 9 2 2 6 3 1 adj det 1 2 9 18 2 9 9 1 0 1 det 0 2 det 1 2 1 det 1 9 1 det 0 9 2 det 0 1 2 1 det 1 9 1 0 det 0 9 0 det 0 1 1 det adj (b) 6. or 3 hen singular w is 6 or 3 when 0 det 6 3 18 9 1 9 1 0 det 2 0 9 0 det 0 1 1 det det (a) 2 1 2 2 0 0 0 0 0 0
  • 56.            3 4 4 4 5 0 4 0 1 A (a) Verify that is an eigenvector of A and find the corresponding eigenvalue. (b) Show that 9 is another eigenvalue of A and find the corresponding eigenvector. (c) Find another eigenvalue and corresponding eigenvector and write down a matrix P and a diagonal matrix D such that P–1 AP = D. Example 3.            1 2 2               . 9 and 3 , 3 are rs eigenvecto 0 9 3 3 0 27 6 3 3 factor a is there (a) part : 0 81 9 9 0 16 80 1 7 9 0 5 4 4 0 1 8 1 0 3 4 4 4 5 0 4 0 1 det is The (b) 3. eigenvalue with of r eigenvecto an is 1 2 2 1 2 2 3 3 6 6 1 2 2 3 4 4 4 5 0 4 0 1 1 2 2 (a) 2 2 3 2 3 2                                                                                                                                              ion stic equat characteri A A Soln. 0 0 0 0 0 0
  • 57.            3 4 4 4 5 0 4 0 1 A (b) Show that 9 is another eigenvalue of A and find the corresponding eigenvector. (c) Find another eigenvalue and corresponding eigenvector and write down a matrix P and a diagonal matrix D such that P–1 AP = D. Example 3 (contd)                                                                                                                                                                                                                         3 0 0 0 3 0 0 0 9 1 1 1 2 1 1 2 1 2 so 3, eigenvalue with of r eigenvecto an is 1 2 2 Also . 3 eigenvalue with of r eigenvecto an is 1 1 1 9; eigenvalue with of r eigenvecto an is 1 1 2 . ; 2 0 0 0 4 4 4 2 4 2 ; 6 4 4 4 4 4 8 3 3 3 ; 9 9 9 3 4 4 4 5 4 3 ; 9 3 4 4 4 5 0 4 0 1 . 3 and 9 to ing correspond rs eigenvecto of n Calculatio (c) , (b) 1 AP P P A A A z y z x z y x z y x z y z x z y x z y z x z y x z y x z y x z y z x z y x z y x z y x Soln. 0 0 0 0 0
  • 58. 0. > and constants are and where . 0 3 1 4 1 a c p, a, b c b a p A             Given AAT = kI , for some constant k. (a) Find the values of p, k, a, b and c. (b) Find det A Example 4.       2 57 2 6 1 2 12 4 2 3 1 det 2 2 2 2 2 3 0 3 1 4 1 So 2 , 2 2 , 2 2 8 , , 2 , 18 25 . 0 , 2 , 18 , 4 , 0 3 3 , 3 , 18 0 0 0 0 0 0 3 4 3 9 3 4 3 18 0 0 0 0 0 0 3 4 3 9 3 4 3 18 . 1 0 4 3 1 0 3 1 4 1 : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                A A b c a a a b c a a a a a b c a c b a c b a c a p k k k k c b a pc a c b a pc a p p c b a p k k k AA c b a pc a c b a pc a p p c b a p c p b a c b a p AA Solution T T 0 0 0 0 0 0 0 0 0