Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Algebra 1 distributive property

  • Login to see the comments

Algebra 1 distributive property

  1. 1. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>5Min 5-3 A. Substitution, Substitution, Multiplicative Inverse, Transitive Property B. Substitution, Transitive Property, Multiplicative Inverse, Additive Identity C. Substitution, Symmetry, Multiplicative Inverse, Additive Identity D. Substitution, Additive Inverse, Multiplicative Inverse, Additive Identity (over Lesson 1-4) Which choice shows the step-by-step properties used to find the solution of
  2. 2. Lesson 5 MI/Vocab <ul><li>term </li></ul><ul><li>like terms </li></ul><ul><li>equivalent expressions </li></ul><ul><li>simplest form </li></ul><ul><li>coefficient </li></ul><ul><li>Use the Distributive Property to evaluate expressions. </li></ul><ul><li>Use the Distributive Property to simplify algebraic expressions. </li></ul>
  3. 3. Lesson 5 CA Standard 1.0 Students identify and use the arithmetic properties of subsets of integers and rational, irrational, and real numbers, including closure properties for the four basic arithmetic operations where applicable. Standard 25.1 Students use properties to construct simple, valid arguments (direct and indirect) for, or formulate counterexamples to claimed assertions.
  4. 4. Lesson 5 KC1
  5. 5. Lesson 5 Ex1 Distribute Over Addition or Subtraction EXERCISE Julia walks 5 days a week. She walks at a fast rate for 7 minutes and then cools down for 2 minutes. Rewrite 5(7 + 2) using the Distributive Property. Evaluate to find the total number of minutes Julia walks. 5 (7 + 2) = 5 ● 7 + 5 ● 2 Distributive Property = 35 + 10 Multiply. = 45 Add. Answer: Julia walks for 45 minutes each week.
  6. 6. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>Lesson 5 CYP1 A. 15 + 5 ● 10; 65 minutes B. 5 ● 15 + 10; 85 minutes C. 5 ● 15 + 5 ● 10; 125 minutes D. 15 + 10; 25 minutes WALKING Susanne walks to school and home from school 5 days each week. She walks to school in 15 minutes and then walks home in 10 minutes. Rewrite 5(15 + 10) using the Distributive Property. Then evaluate to find the total number of minutes Susanne spends walking to and home from school.
  7. 7. Lesson 5 Ex2 The Distributive Property and Mental Math Use the Distributive Property to find 12 ● 82. 12 ● 82 = 12( 80 + 2 ) Think: 82 = 80 + 2 = 12(80) + 12(2) Distributive Property = 960 + 24 Multiply. = 984 Add. Answer: 984
  8. 8. Lesson 5 CYP2 <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>A. 300 B. 24 C. 324 D. 6(50 + 4) Use the Distributive Property to find 6 ● 54.
  9. 9. Lesson 5 Ex3 Algebraic Expressions A. Rewrite 12( y + 3) using the Distributive Property. Then simplify. 12 ( y + 3) = 12 ● y + 12 ● 3 Distributive Property Answer: 12 y + 36
  10. 10. Lesson 5 Ex3 Algebraic Expressions B. Rewrite 4( y 2 + 8 y + 2) using the Distributive Property. Then simplify. 4 ( y 2 + 8 y + 2) = 4 ( y 2 )+ 4 (8 y ) + 4 (2) Distributive Property = 4 y 2 + 32 y + 8 Multiply. Answer: 4 y 2 + 32 y + 8 BrainPop: The Distributive Property
  11. 11. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>Lesson 5 CYP3 A. 6 x – 4 B. 6 x – 24 C. x – 24 D. 6 x + 2 A. Simplify 6( x – 4).
  12. 12. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>Lesson 5 CYP3 A. 3 x 3 + 2 x 2 – 5 x + 7 B. 4 x 3 + 5 x 2 – 2 x + 10 C. 3 x 3 + 6 x 2 – 15 x + 21 D. x 3 + 2 x 2 –5 x +21 B. Simplify 3( x 3 + 2 x 2 – 5 x + 7).
  13. 13. Lesson 5 Ex4 A. Simplify 17 a + 21 a . 17 a + 21 a = (17 + 21) a Distributive Property = 38 a Substitution Answer: 38 a Combine Like Terms
  14. 14. Lesson 5 Ex4 B. Simplify 12 b 2 – 8 b 2 + 6 b . 12 b 2 – 8 b 2 + 6 b = (12 – 8) b 2 + 6 b Distributive Property = 4 b 2 + 6 b Substitution Answer: 4 b 2 + 6 b Combine Like Terms
  15. 15. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>Lesson 5 CYP4 A. 5 x 2 B. 23 x C. 5 D. 5 x A. Simplify 14 x – 9 x.
  16. 16. <ul><li>A </li></ul><ul><li>B </li></ul><ul><li>C </li></ul><ul><li>D </li></ul>Lesson 5 CYP4 A. 6 n 2 + 15 n B. 21 n 2 C. 6 n 2 + 56 n D. 62 n 2 A. Simplify 6 n 2 + 7 n + 8 n.

×