Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

No Downloads

Total views

474

On SlideShare

0

From Embeds

0

Number of Embeds

2

Shares

0

Downloads

0

Comments

0

Likes

1

No embeds

No notes for slide

- 1. Inverse Functions
- 2. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.
- 3. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?
- 4. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function.
- 5. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x)
- 6. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).
- 7. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).We say f(x) and f -1(y) are the inverse of each other.
- 8. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).We say f(x) and f -1(y) are the inverse of each other.Example A. Let f(x) = x2 = y. Suppose y = 9, what is (are) theinput x that produces y = 9? Is this reverse procedure afunction?
- 9. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).We say f(x) and f -1(y) are the inverse of each other.Example A. Let f(x) = x2 = y. Suppose y = 9, what is (are) theinput x that produces y = 9? Is this reverse procedure afunction?Since f(x) = x2 = 9,
- 10. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).We say f(x) and f -1(y) are the inverse of each other.Example A. Let f(x) = x2 = y. Suppose y = 9, what is (are) theinput x that produces y = 9? Is this reverse procedure afunction?Since f(x) = x2 = 9,so x = ±√9x = – 3, x = 3.
- 11. Inverse FunctionsA function f(x) = y takes an input x and produces one output y.We like to do the reverse, that is, if we know the output y, whatwas (were) the input x?This procedure of associating the output y to the input x mayor may not be a function. If it is a function, it is called theinverse function of f(x) and it is denoted as f -1(y).We say f(x) and f -1(y) are the inverse of each other.Example A. Let f(x) = x2 = y. Suppose y = 9, what is (are) theinput x that produces y = 9? Is this reverse procedure afunction?Since f(x) = x2 = 9,so x = ±√9x = – 3, x = 3.This reverse procedure takes y = 9 and associates to it twodifferent answers so it is not a function.What condition is needed for a function to have an inverse?
- 12. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs
- 13. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9).
- 14. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.
- 15. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs.
- 16. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v).
- 17. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, a one-to-one function
- 18. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u v any pair u = v a one-to-one function
- 19. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u f(u) v any pair u = v a one-to-one function
- 20. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u f(u) v f(v) any pair u = v f(u) = f(v) a one-to-one function
- 21. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u f(u) v f(v) any pair u = v f(u) = f(v) a one-to-one function a none one-to-one function
- 22. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u f(u) u v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one function
- 23. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, u f(u) u v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one function
- 24. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, such that u f(u) u f(u)=f(v) v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one function
- 25. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, such that u f(u) u f(u)=f(v) v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one functionExample B.a. g(x) = 2x is one-to-one
- 26. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, such that u f(u) u f(u)=f(v) v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one functionExample B.a. g(x) = 2x is one-to-onebecause if u v, then 2u 2v.
- 27. Inverse FunctionsThe reverse of the function f(x) = x2 fails to be a functionbecause x2 produces the same output with two or moredifferent inputs (e.g. f(3) = f(–3) = 9). This prevents us frompinpointing exactly what x is even that we know the output is 9.A function is one-to-one if different inputs produce differentoutputs. That is, f(x) is said to be one-to-one if for every twodifferent inputs u and v then f(u) f(v). In pictures, such that u f(u) u f(u)=f(v) v f(v) v any pair u = v f(u) = f(v) there exist u = v a one-to-one function a none one-to-one functionExample B.a. g(x) = 2x is one-to-onebecause if u v, then 2u 2v.b. f(x) = x2 is not one-to-one because for example3 –3, but f(3) = f(–3) = 9.
- 28. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function.
- 29. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) u f(u) v f(v) u=v f(u) = f(v) f(x) is a one-to-one function
- 30. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined function
- 31. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.
- 32. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4
- 33. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4Given y = 3 x – 5, clear the denominator to solve for x. 4
- 34. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4Given y = 3 x – 5, clear the denominator to solve for x. 4 4y = 3x – 20
- 35. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4Given y = 3 x – 5, clear the denominator to solve for x. 4 4y = 3x – 20 4y + 20 = 3x
- 36. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4Given y = 3 x – 5, clear the denominator to solve for x. 4 4y = 3x – 20 4y + 20 = 3x 4y + 20 = x 3
- 37. Inverse FunctionsFact: If y = f(x) is one-to-one, then f –1(y) exists, i.e. the reverseprocedure for f(x) is a function. In picture, f(x) f –1(y) u f(u) u f(u) v f(v) v f(v) u=v f(u) = f(v) u=v f(u) = f(v) f(x) is a one-to-one function f –1(y) is a well defined functionGiven a simple y = f(x) we may solve equation y = f(x) for x interms of y to find f –1(y) explicitly.Example C. Find the inverse function of y = f(x) = 3 x – 5 4Given y = 3 x – 5, clear the denominator to solve for x. 4 4y = 3x – 20 4y + 20 = 3x 4y + 20 = x 3(Note: In general it’s impossible to solve for x explicitly.)
- 38. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b
- 39. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b f(a) = b a b
- 40. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b). f(a) = b a b a = f –1(b)
- 41. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x
- 42. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x f(x) x f(x)
- 43. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x f(x) x f(x) f –1(f(x)) = x
- 44. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) x f(x) f –1(f(x)) = x
- 45. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f –1(f(x)) = x
- 46. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = x
- 47. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3
- 48. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) =
- 49. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3
- 50. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3 = 3 ( 4y + 20 ) – 5 4 3
- 51. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3 = 3 ( 4y + 20 ) – 5 4 3
- 52. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3 = 3 ( 4y + 20 ) – 5 4 3 = 4y + 20 – 5 4
- 53. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3 = 3 ( 4y + 20 ) – 5 4 3 = 4y + 20 – 5 4 4(y + 5) = –5 4
- 54. Inverse FunctionsLet f and f –1 be a pair of inverse functions and thatf(a) = b then a = f –1(b).Theorem: If f(x) and f -1(y) are the inverse of each other,then f –1(f(x)) = x and that f(f –1 (y)) = y. f(x) f –1(y) x f(x) f –1(y) y f(f–1 (y) = y f –1(f(x)) = xExample D. Given the pair of inverse functions f(x) = 3 x – 5 4and f –1(y) = 4y + 20 show that f(f –1(y)) = y. 3f (f –1(y)) = f ( 4y + 20 ) 3 = 3 ( 4y + 20 ) – 5 4 3 = 4y + 20 – 5 4 4(y + 5) = –5 =y+5–5=y 4
- 55. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3
- 56. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 .
- 57. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , x
- 58. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. x
- 59. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1
- 60. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1yx + y = 2x – 1
- 61. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1yx + y = 2x – 1y + 1 = 2x – yx
- 62. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1yx + y = 2x – 1y + 1 = 2x – yxy + 1 = (2 – y)x
- 63. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1yx + y = 2x – 1y + 1 = 2x – yxy + 1 = (2 – y)x y+1 =x 2–y
- 64. Inverse FunctionsSince we usually use x as the independent variable forfunctions, so we often write the inverse as f –1(x) such asf–1(x) = 4x + 20 . 3Example E. 2x – 1a. Find the inverse functions f–1(x) of f(x) = x + 1 . –1Set f(x) = y = 2x + 1 , clear the denominator then solve for x. xy(x + 1) = 2x – 1yx + y = 2x – 1y + 1 = 2x – yxy + 1 = (2 – y)x y+1 =x 2–y x+1Hence f–1(x) = 2–x
- 65. Inverse Functionsb. Show that f(f –1(x)) = x.
- 66. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1
- 67. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) =
- 68. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2–x
- 69. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2–x x + 1) 2(2 – x – 1 (2 – x) = 2 – (x + 1 ) (2 – x) 2–x
- 70. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2–x x + 1) 2(2 – x – 1 (2 – x) = x + 1 ) (2 – x) clear denominator 2 –( 2–x
- 71. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2–x x + 1) [ 2(2 – x – 1 ] (2 – x) = x+1 clear denominator [( 2 – x ) + 1 ] (2 – x)
- 72. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2–x x + 1) [ 2(2 – x – 1 ] (2 – x) = x+1 clear denominator [( 2 – x ) + 1 ] (2 – x)
- 73. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2 – x (2 – x) x + 1) [ 2(2 – x – 1 ] (2 – x) = x + 1 (2 – x) clear denominator [( 2 – x ) + 1 ] (2 – x)
- 74. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2 – x (2 – x) x + 1) [ 2(2 – x – 1 ] (2 – x) = x + 1 (2 – x) clear denominator [( 2 – x ) + 1 ] (2 – x) 2(x + 1) – (2 – x) = (x + 1) + (2 – x)
- 75. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2 – x (2 – x) x + 1) [ 2(2 – x – 1 ] (2 – x) = x + 1 (2 – x) clear denominator [( 2 – x ) + 1 ] (2 – x) 2(x + 1) – (2 – x) = (x + 1) + (2 – x) 2x + 2 – 2 + x = x+1+2–x
- 76. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2 – x (2 – x) x + 1) [ 2(2 – x – 1 ] (2 – x) = x + 1 (2 – x) clear denominator [( 2 – x ) + 1 ] (2 – x) 2(x + 1) – (2 – x) = (x + 1) + (2 – x) 2x + 2 – 2 + x = x+1+2–x = 3x = x 3
- 77. Inverse Functionsb. Show that f(f –1(x)) = x.We have f (x) = 2x – 1 and that f–1(x) = 2 – x x+1 x+1Hence that f(f –1(x)) = f( x + 1 ) 2 – x (2 – x) x + 1) [ 2(2 – x – 1 ] (2 – x) = x + 1 (2 – x) clear denominator [( 2 – x ) + 1 ] (2 – x) 2(x + 1) – (2 – x) = (x + 1) + (2 – x) 2x + 2 – 2 + x = x+1+2–x = 3x = x 3Your turn: verify that f–1 (f (x)) = x.

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment