SlideShare a Scribd company logo
1 of 39
LABORATORIO DI ASTRONOMIA SOLARE 1 SOLAR ASTRONOMY Classe Prima Esperienza teorico – pratico sullo studio del Sole
Latitudine e Longitudine La latitudine geografica è la distanza angolare di un punto (P) dall'equatore misurata lungo il meridiano che passa per quel punto.  La longitudine geografica è la distanza angolare di un punto (P) dal meridiano fondamentale (di Greenwinch), misurata sull'arco di parallelo che passa per quel punto.  2 LABORATORIO DI ASTRONOMIA SOLARE
Orizzonte terrestre La superficie terrestre ha una forma approssimativamente sferica ma, ai nostri occhi, ne è visibile solo una piccola parte. Si può immaginare l'orizzonte come una la linea che limita il nostro sguardo e lungo la quale sembra che la Terra e la volta celeste si tocchino. Dal punto di vista astronomico, l'orizzonte delimita la parte della sfera celeste che possiamo osservare. Il piano dell'orizzonte si può materializzare con la superficie di un liquido in quiete (superficie di livello libera), nel punto di osservazione. La perpendicolare ad esso è la verticale del luogo che passa per lo zenit. 3 LABORATORIO DI ASTRONOMIA SOLARE
Zenit e Nadir Per verticale del luogo si intende la direzione della gravità nel punto di osservazione, perpendicolare al piano orizzontale. La verticale è materializzata dalla direzione del filo a piombo. Lo zenit è il punto in cui la verticale del luogo interseca la sfera celeste. Il nadir è il punto diametralmente opposto allo zenit, sempre sulla sfera celeste.  4 LABORATORIO DI ASTRONOMIA SOLARE
Linea meridiana Per linea meridiana (o semplicemente meridiana) si intende proprio la retta NS che, in quell'istante, si trova nella stessa direzione dell'ombra e giace sul piano orizzontale. Essa identifica la direzione dei punti cardinali SUD (verso il Sole, nel nostro emisfero) e NORD (dalla parte opposta al Sole). La retta EW, perpendicolare alla meridiana passante per O e giacente sul piano orizzontale, identifica le direzioni cardinali EST (a sinistra di chi guarda a sud) e OVEST (a destra). 5 LABORATORIO DI ASTRONOMIA SOLARE
Altezza ed Azimut Altezza: è la distanza angolare dall'orizzonte di un punto (T) sulla sfera celeste misurata lungo il cerchio verticale passante per quel punto. Azimut: è l'angolo formato dal piano del cerchio verticale passante per il punto con il piano del meridiano del luogo. 6 LABORATORIO DI ASTRONOMIA SOLARE
La culminazione è il passaggio di un corpo celeste attraverso il meridiano astronomico. Si distingue una culminazione superiore o transito come l'attraversamento più vicino allo zenit e la culminazione inferiore come l'attraversamento più lontano dallo zenit. Per le stelle circumpolari e per la Luna, il transito viene detto anche passaggio sopra il polo, mentre la culminazione inferiore si chiama anche passaggio sotto il polo.  7 LABORATORIO DI ASTRONOMIA SOLARE
Mezzogiorno vero Il mezzogiorno è, in generale, l'istante di culminazione del Sole in meridiano. Si distingue un mezzogiorno vero, se è riferito alla culminazione del Sole vero e un mezzogiorno medio se si riferisce al Sole medio. La differenza tra i due mezzogiorni corrisponde alla differenza tra il tempo solare vero e il tempo solare medio, è pari cioè all'equazione del tempo. Sia il mezzogiorno vero che quello medio sono istanti locali, dipendono cioè dalla longitudine del luogo di osservazione. Il mezzogiorno civile è invece quello segnato dalle ore 12 degli orologi e differisce dai primi due in funzione della distanza in longitudine del luogo di osservazione rispetto al meridiano centrale del fuso (vedi costante locale). Il mezzogiorno vero è individuato dagli orologi solari. E' possibile determinare il momento del mezzogiorno vero conoscendo la costante locale e l'equazione del tempo.  LABORATORIO DI ASTRONOMIA SOLARE 8
Giorno medio Il giorno solare medio è l'intervallo di tempo che intercorre tra due successivi passaggi del Sole medio sullo stesso meridiano. Il giorno solare medio ha un valore costante: rappresenta la durata media del giorno solare vero, che invece è variabile nel corso dell'anno. Il giorno solare medio, considerato come unità di misura del tempo solare medio, inizia alla culminazione superiore del Sole medio. L'istante di inizio del giorno solare medio, non è conveniente per usi civili perché porterebbe ad un cambiamento di data nelle ore diurne (a mezzogiorno). Si è introdotto così il giorno civile: esso è un giorno solare medio che inizia alla mezzanotte media, cioè alla culminazione inferiore del Sole medio. LABORATORIO DI ASTRONOMIA SOLARE 9
Gnomone  E' un'asta verticale infissa nel terreno che nell'antichità serviva per determinare l'ora mediante l'ombra proiettata. Quando l'ombra coincideva con la linea meridiana passante per il piede dell'asta l'ora segnata era il mezzogiorno vero. Lo gnomone è stato inoltre utilizzato per risolvere problemi di fondamentale importanza per l'Astronomia, quali la determinazione della latitudine di un luogo, della obliquità dell'eclittica e della posizione del punto g. Con questo termine si intende anche, in generale, lo stilo di un orologio solare, che non è necessariamente verticale. 10 LABORATORIO DI ASTRONOMIA SOLARE
Moto apparente del Sole La Terra ruota attorno al Sole in senso antiorario rispetto ad un osservatore boreale con un periodo detto anno sidereo. Il piano dell'equatore non è parallelo al piano dell'orbita attorno al Sole ma è inclinato di circa 23°,5 (23° 27') rispetto ad esso (obliquità dell'eclittica). Tale inclinazione, che in prima approssimazione è di misura e orientamento costanti, fa sì che la Terra nel corso dell'anno si trovi in quattro disposizioni caratteristiche rispetto al Sole. I quattro punti particolari dell'eclittica e i momenti dell'anno in cui il Sole vi si trova vengono chiamati equinozi e solstizi.  LABORATORIO DI ASTRONOMIA SOLARE 11
Le stagioni Solstizio d'estate (21-22 giugno circa): il raggio vettore (segmento che congiunge il centro del Sole con il centro della Terra) è inclinato di 23°,5 rispetto al piano dell'equatore e interseca la superficie terrestre in un punto dell'emisfero boreale (estate boreale e inverno australe).  Equinozio d'autunno (circa 23 settembre): il raggio vettore interseca l'equatore terrestre nel Punto della Bilancia, procedendo dall'emisfere celeste boreale a quello australe.  Solstizio d'inverno (circa 22 dicembre): il raggio vettore è inclinato di 23°,5 rispetto all'equatore e interseca la superficie terrestre in un punto dell'emisfero australe(inverno boreale ed estate australe).  Equinozio di primavera (intorno al 22 marzo): il raggio vettore torna a intersecare l'equatore nel Punto gamma, procedendo dall'emisfero celeste australe a quello boreale. LABORATORIO DI ASTRONOMIA SOLARE 12
Esperimento N°1Moto apparente del Sole Per realizzare l’esperimento procediamo nel seguente modo: Posizioniamo i banchi in modo che tutti i mesi la luce del Sole arrivi sullo gnomone; Attaccare i cartelloni ai banchi e lo gnomone in posizione centrale; Ogni due settimane ad intervalli di 30’ segnare la posizione dell’ombra proiettata dallo gnomone; Ripetere questa procedura per quattro mesi; Unire i punti dello stesso colore realizzando le curve proiettate dallo gnomone. 13 LABORATORIO DI ASTRONOMIA SOLARE
Al termine dell’esperimento abbiamo osservato i risultati ottenuti e discusso in classe le possibili spiegazioni. Ecco cosa abbiamo capito dall’osservazione delle curve trovate:  ,[object Object]
Si osserva il fenomeno delle stagioni. Tale fenomeno è dovuto all’inclinazione dell’asse terrestre;
Nelle stagioni invernali si osserva una linea molto curva con la concavità rivolta verso l’alto.
Durante il periodo invernale, le curve si formano lontano allo gnomone. Questo è dovuto al fatto che il Sole è basso sull’orizzonte e quindi le ombre sono più lunghe.
Nei giorni vicini all’equinozio di primavera, le curve si avvicinano allo gnomone e diventano quasi delle rette. Questo si spiega con il fatto che il Sole si alza maggiormente rispetto all’orizzonte e percorre, nel cielo un,orbita meno arcuata.LABORATORIO DI ASTRONOMIA SOLARE 14 Osservazioni finali
Questo secondo esperimento ci ha permesso di realizzare alcuni semplici strumenti di misurazione della posizione del Sole. Con l’aiuto del professore siamo riusciti a realizzare i seguenti strumenti. Tutti questi strumenti ci hanno permesso di svolgere numerose misure dell’altezza del Sole, dell’azimut solare e per quanto riguarda le meridiane di misurare  lo scorrere del tempo.	 Quadranti mobili Quadranti fissi Sestanti Teodoliti Meridiane analemmatiche Orologi solari LABORATORIO DI ASTRONOMIA SOLARE 15 Esperimento N°2 – Strumenti
Strumenti di misurazione Quadrante fisso LABORATORIO DI ASTRONOMIA SOLARE 16
Strumenti di misurazione Quadrante mobile LABORATORIO DI ASTRONOMIA SOLARE 17
Strumenti di misurazione Sestanti  LABORATORIO DI ASTRONOMIA SOLARE 18
Strumenti di misurazione Teodolite munito di cannocchiale kepleriano LABORATORIO DI ASTRONOMIA SOLARE 19
Strumenti di misurazione Teodoliti  LABORATORIO DI ASTRONOMIA SOLARE 20
Strumenti di misurazione Meridiana analemmatica LABORATORIO DI ASTRONOMIA SOLARE 21
Strumenti di misurazione Meridiana analemmatica LABORATORIO DI ASTRONOMIA SOLARE 22
Strumenti di misurazione Orologio solare LABORATORIO DI ASTRONOMIA SOLARE 23
Esperimento N°3 - misura dell’altezza del Sole L'altezza  del Sole (angolo α) si può misurare con buona precisione anche con strumenti molto semplici. Tutti i metodi che abbiamo trovato si basano sulla proiezione dell'ombra di uno stilo verticale (o gnomone) sul piano orizzontale, da cui si individua un triangolo rettangolo ABC, dove AC rappresenta la proiezione di un raggio solare, l'angolo α corrisponde all’altezza del sole sull’orizzonte, AB è lo gnomone e CB la sua ombra . Il triangolo ABC può essere geometricamente utile per la misura diretta o indiretta dell'angolo α. 24 LABORATORIO DI ASTRONOMIA SOLARE
La nostra base gnomonica Noi abbiamo usato una serie di gnomoni di carta puntati su una base di polistirolo divisa in 12 caselle ognuna delle quali occupata da uno gnomone. I ragazzi, ad una data ora, puntano uno spillo sulla base dello gnomone ed uno in corrispondenza dell’ombra proiettata dall’estremità superiore dello stesso.  25 LABORATORIO DI ASTRONOMIA SOLARE
Il triangolo del Sole Successivamente, utilizzando un doppio decimetro, hanno determinato la lunghezza dell’ombra di ogni singolo gnomone. Questo ha permesso di disegnare sulla carta millimetrata, per ogni singolo gnomone, un triangolo simile al triangolo ACB disegnato in figura  per cui l’angolo α sul foglio millimetrato rappresenta (per le proprietà dei triangoli simili) l’altezza del Sole in quel determinato momento della giornata. 26 LABORATORIO DI ASTRONOMIA SOLARE
Esperimento N°4 – Misura del meridiano terrestre Per il secondo anno consecutivo, la nostra scuola ha partecipato alla settimana nazionale dell’astronomia. Uno degli obiettivi di questo anno è stato la misura del meridiano terrestre effettuata in collaborazione altre scuole sparse sul territorio europeo. LABORATORIO DI ASTRONOMIA SOLARE 27
Premessa storica Eratostene, nel III secolo avanti Cristo, realizzò la prima misurazione delle dimensioni della Terra. Egli si accorse infatti che, a mezzogiorno del solstizio d'estate, a Siene (l'attuale Assuan) i raggi solari cadevano verticalmente illuminando il fondo dei pozzi. Ciò invece non accadeva ad Alessandria d'Egitto: qui formavano un angolo di 7,2° rispetto alla verticale del luogo. Eratostene assunse che la forma della Terra fosse sferica e che i raggi solari fossero paralleli. Di conseguenza, l'angolo di 7,2° è uguale all'angolo che ha per vertice il centro della Terra e i cui lati passano rispettivamente per Alessandria e per Siene. L’angolo di 7,2° è un cinquantesimo dell’angolo giro e quindi anche la distanza tra le due città (un arco di circonferenza massima) deve essere un cinquantesimo della circonferenza terrestre.   A quel tempo, la distanza tra Alessandria e Siene era considerata di 5.000 stadi che, moltiplicato per 50, dava una misura di 250.000 stadi: era la prima determinazione della circonferenza della Terra basata su un metodo scientificamente valido. Secondo alcuni storici uno stadio corrispondeva a 157,5 metri attuali e quindi la circonferenza terrestre, stimata da Eratostene, era di 39.690 chilometri: un dato di sconcertante attualità! LABORATORIO DI ASTRONOMIA SOLARE 28
Elenco scuole partecipanti Istituto Comprensivo “A. Pisano” di Caldiero (Verona) sede di Belfiore – referente – Massimo Bubani Liceo Scientifico “E. Onorato” di Lucera (Foggia) – referente Lucia Ciuffreda Scuola Media Statale “G. Caloprese” di Scalea (Cosenza) referente – Giuseppe Castelli  Scuola europea di Karlsruhe (Karlsruhe) – referente – Ugo ghigne  Istituto Comprensivo “Einaudi” di Lequio Tanaro (Cuneo) – referente Giuseppe Rolfo  Istituto Comprensivo di S. Ilario d’Enza (Reggio Emilia) – referente William Cavazioni  Scuola Europea (Francoforte FrankfurtamMain) – referente Daniela Bovi  LABORATORIO DI ASTRONOMIA SOLARE 29
Il metodo Il metodo si basa sulla determinazione della lunghezza dell’ombra b proiettata da parte di uno gnomone di altezza h e la misurazione dell’angolo a che i raggi solari formano con il piano orizzontale. Gli alunni hanno realizzato 12 gnomoni in cartoncino che sono stati posizionati su di una base in polistirolo perfettamente planare. Tutti gli gnomoni sono stati accuratamente posizionati all’interno delle proprie postazioni in modo da verificare, per ognuno, la verticalità. Tutte le misure di lunghezza sono state ottenute utilizzando righe, squadre e righelli con sensibilità di 1mm.  30 LABORATORIO DI ASTRONOMIA SOLARE
Procedimento  Per misurare l’altezza del Sole abbiamo utilizzato due tecniche differenti. La prima misurazione è stata ottenuta riportando il triangolo del Sole su di un foglio di carta millimetrata con l’accortezza di riportare dimezzate entrambe le misure dei cateti per farle rientrare all’interno del foglio formato A4. La seconda misurazione, che corrisponde anche ad una verifica della prima tecnica, è stata eseguita utilizzando il modulo di calcolo presente all’indirizzo www.vialattea.net/eratostene/altezza/arctan.html, all’interno del sito proprio della Rete di Eratostene. LABORATORIO DI ASTRONOMIA SOLARE 31
Distanza tra le scuole Per calcolare la distanza tra le due località (arco di meridiano terrestre) abbiamo utilizzato una carta geografica dell’Italia in scala 1:1000000. Tuttavia, le località interessate dalle misurazioni, non si trovano sullo stesso meridiano terrestre, per cui abbiamo dovuto trasportare idealmente una delle località sul meridiano dell’altra e utilizzare come distanza proprio il segmento che unisce questi due punti sulla carta geografica moltiplicato per il fattore di scala.  32 LABORATORIO DI ASTRONOMIA SOLARE
Il calcolo delle distanze Ad esempio se la distanza tra le due località (con la correzione di cui sopra) è di 250 mm, l’arco di meridiano corrisponde a: d = (250 ± 1) mm x 1000000 = (250 ± 1) km. LABORATORIO DI ASTRONOMIA SOLARE 33
Calcolo del meridiano terrestre Per determinare la misura del meridiano terrestre abbiamo seguito la seguente procedura operativa: si calcola la distanza d tra le due località in linea d’aria situate virtualmente sullo stesso meridiano; si calcolano le 12 misure dell’altezza del Sole come indicato in precedenza; si determina la media aritmetica; si calcola l’errore della media calcolando la semidistersione;  Erramedio = (amax-amin):2 si calcola la differenza .a delle altezze del Sole tra le due località tenendo conto anche degli errori sperimentali; si calcola la circonferenza terrestre C corrispondente al meridiano secondo la proporzione:  360 : C = a : d dalla quale si ricava facilmente  C = 360xd/ a RTerra = C/2p. LABORATORIO DI ASTRONOMIA SOLARE 34
Prima misura LABORATORIO DI ASTRONOMIA SOLARE 35

More Related Content

What's hot

Roberto base datum
Roberto base datumRoberto base datum
Roberto base datumi6dxa
 
Corso distanze astro 2
Corso distanze astro  2Corso distanze astro  2
Corso distanze astro 2frosinangel
 
Introduzione alla geografia classe1
Introduzione alla geografia classe1Introduzione alla geografia classe1
Introduzione alla geografia classe1Mara Beber
 
Il Sole E Lo Studio Sulle Ombre
Il Sole E Lo Studio Sulle OmbreIl Sole E Lo Studio Sulle Ombre
Il Sole E Lo Studio Sulle OmbreSalvatore Randazzo
 
Moto Di Rivoluzione Terrestre Devenuto
Moto Di Rivoluzione Terrestre DevenutoMoto Di Rivoluzione Terrestre Devenuto
Moto Di Rivoluzione Terrestre Devenutoandrea.multari
 
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)idigitalichiavari
 
Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600martolomeo
 
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...Roberto Gregoratti
 
Gli strumenti base della geografia
Gli strumenti base della geografiaGli strumenti base della geografia
Gli strumenti base della geografiaAnna Turchet
 

What's hot (20)

Eratostene
EratosteneEratostene
Eratostene
 
La terra 2
La terra 2La terra 2
La terra 2
 
Roberto base datum
Roberto base datumRoberto base datum
Roberto base datum
 
Corso distanze astro 2
Corso distanze astro  2Corso distanze astro  2
Corso distanze astro 2
 
Introduzione alla geografia classe1
Introduzione alla geografia classe1Introduzione alla geografia classe1
Introduzione alla geografia classe1
 
Cartografia Italia
Cartografia ItaliaCartografia Italia
Cartografia Italia
 
Il Sole E Lo Studio Sulle Ombre
Il Sole E Lo Studio Sulle OmbreIl Sole E Lo Studio Sulle Ombre
Il Sole E Lo Studio Sulle Ombre
 
I movimenti della terra
I movimenti della terraI movimenti della terra
I movimenti della terra
 
I movimenti della terra
I movimenti della terraI movimenti della terra
I movimenti della terra
 
Cap. 5 il pianeta terra
Cap. 5 il pianeta terraCap. 5 il pianeta terra
Cap. 5 il pianeta terra
 
Moto Di Rivoluzione Terrestre Devenuto
Moto Di Rivoluzione Terrestre DevenutoMoto Di Rivoluzione Terrestre Devenuto
Moto Di Rivoluzione Terrestre Devenuto
 
01 sfera celeste
01 sfera celeste01 sfera celeste
01 sfera celeste
 
Mi sono perso
Mi sono persoMi sono perso
Mi sono perso
 
Cielo
CieloCielo
Cielo
 
L’universo
L’universoL’universo
L’universo
 
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)
Il moto di rotazione e di rivoluzione (Francesca, Gaia e Giada)
 
Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600
 
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...
Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo...
 
Gli strumenti base della geografia
Gli strumenti base della geografiaGli strumenti base della geografia
Gli strumenti base della geografia
 
Moti della terra
Moti della terraMoti della terra
Moti della terra
 

Viewers also liked

Villafranca - S. Lucia 2-3
Villafranca - S. Lucia 2-3Villafranca - S. Lucia 2-3
Villafranca - S. Lucia 2-3Massimo Bubani
 
S.Martino-Villafranca 1-2
S.Martino-Villafranca 1-2S.Martino-Villafranca 1-2
S.Martino-Villafranca 1-2Massimo Bubani
 
Slides Esperimenti Svolti Classe Prima
Slides Esperimenti Svolti Classe PrimaSlides Esperimenti Svolti Classe Prima
Slides Esperimenti Svolti Classe PrimaMassimo Bubani
 
Hai Să Fim Copii Ai PăMâNtului!
Hai Să Fim Copii Ai PăMâNtului!Hai Să Fim Copii Ai PăMâNtului!
Hai Să Fim Copii Ai PăMâNtului!lumy19
 
Slides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe TerzaSlides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe TerzaMassimo Bubani
 
Dacă Aş Fi PăMâNtul...
Dacă Aş Fi PăMâNtul...Dacă Aş Fi PăMâNtul...
Dacă Aş Fi PăMâNtul...lumy19
 
Villafranca - S. Giovanni Lupatoto
Villafranca - S. Giovanni LupatotoVillafranca - S. Giovanni Lupatoto
Villafranca - S. Giovanni LupatotoMassimo Bubani
 
Dr della yarnold indigenous transitions pathways director, nt medical school...
Dr della yarnold  indigenous transitions pathways director, nt medical school...Dr della yarnold  indigenous transitions pathways director, nt medical school...
Dr della yarnold indigenous transitions pathways director, nt medical school...BiteTheDust
 
Solar Astronomy Classe Terza
Solar Astronomy Classe TerzaSolar Astronomy Classe Terza
Solar Astronomy Classe TerzaMassimo Bubani
 
Anne johnson community engagement consultant sa
Anne johnson  community engagement consultant saAnne johnson  community engagement consultant sa
Anne johnson community engagement consultant saBiteTheDust
 
Training Presentation
Training PresentationTraining Presentation
Training PresentationPatricia35
 

Viewers also liked (17)

Villafranca - S. Lucia 2-3
Villafranca - S. Lucia 2-3Villafranca - S. Lucia 2-3
Villafranca - S. Lucia 2-3
 
S.Martino-Villafranca 1-2
S.Martino-Villafranca 1-2S.Martino-Villafranca 1-2
S.Martino-Villafranca 1-2
 
Newsletter febbraio
Newsletter febbraioNewsletter febbraio
Newsletter febbraio
 
Newsletter Marzo
Newsletter MarzoNewsletter Marzo
Newsletter Marzo
 
Newsletter febbraio
Newsletter febbraioNewsletter febbraio
Newsletter febbraio
 
Robotlab lezione4
Robotlab lezione4Robotlab lezione4
Robotlab lezione4
 
Newsletter aprile
Newsletter aprileNewsletter aprile
Newsletter aprile
 
Slides Esperimenti Svolti Classe Prima
Slides Esperimenti Svolti Classe PrimaSlides Esperimenti Svolti Classe Prima
Slides Esperimenti Svolti Classe Prima
 
Hai Să Fim Copii Ai PăMâNtului!
Hai Să Fim Copii Ai PăMâNtului!Hai Să Fim Copii Ai PăMâNtului!
Hai Să Fim Copii Ai PăMâNtului!
 
Slides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe TerzaSlides Esperimenti Svolti Classe Terza
Slides Esperimenti Svolti Classe Terza
 
Dacă Aş Fi PăMâNtul...
Dacă Aş Fi PăMâNtul...Dacă Aş Fi PăMâNtul...
Dacă Aş Fi PăMâNtul...
 
Statzpack
StatzpackStatzpack
Statzpack
 
Villafranca - S. Giovanni Lupatoto
Villafranca - S. Giovanni LupatotoVillafranca - S. Giovanni Lupatoto
Villafranca - S. Giovanni Lupatoto
 
Dr della yarnold indigenous transitions pathways director, nt medical school...
Dr della yarnold  indigenous transitions pathways director, nt medical school...Dr della yarnold  indigenous transitions pathways director, nt medical school...
Dr della yarnold indigenous transitions pathways director, nt medical school...
 
Solar Astronomy Classe Terza
Solar Astronomy Classe TerzaSolar Astronomy Classe Terza
Solar Astronomy Classe Terza
 
Anne johnson community engagement consultant sa
Anne johnson  community engagement consultant saAnne johnson  community engagement consultant sa
Anne johnson community engagement consultant sa
 
Training Presentation
Training PresentationTraining Presentation
Training Presentation
 

Similar to Solar Astronomy Classe Prima

Similar to Solar Astronomy Classe Prima (19)

Movimenti della Terra e della Luna
Movimenti della Terra e della LunaMovimenti della Terra e della Luna
Movimenti della Terra e della Luna
 
La terra e i suoi moti
La terra e i suoi motiLa terra e i suoi moti
La terra e i suoi moti
 
TERRA, LUNA E LITOSFERA - scienze.pptx
TERRA, LUNA E LITOSFERA - scienze.pptxTERRA, LUNA E LITOSFERA - scienze.pptx
TERRA, LUNA E LITOSFERA - scienze.pptx
 
La terra e il sistema solare
La terra e il sistema solareLa terra e il sistema solare
La terra e il sistema solare
 
La rotazione del sole
La rotazione del soleLa rotazione del sole
La rotazione del sole
 
Orientamento
OrientamentoOrientamento
Orientamento
 
Guida all'Eclisse totale di luna del 27 luglio 2018
Guida all'Eclisse totale di luna del 27 luglio 2018Guida all'Eclisse totale di luna del 27 luglio 2018
Guida all'Eclisse totale di luna del 27 luglio 2018
 
Fasi progetto orologio solare
Fasi progetto orologio solareFasi progetto orologio solare
Fasi progetto orologio solare
 
Presentazione eclisse
Presentazione eclissePresentazione eclisse
Presentazione eclisse
 
1.La Terra e Il Sistema Solare
1.La Terra e Il Sistema Solare1.La Terra e Il Sistema Solare
1.La Terra e Il Sistema Solare
 
Luna
LunaLuna
Luna
 
1.terra
1.terra1.terra
1.terra
 
Eclissi
EclissiEclissi
Eclissi
 
Geo
GeoGeo
Geo
 
Sistema solare
Sistema solareSistema solare
Sistema solare
 
Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600Storia Astronomia Fino Al 600
Storia Astronomia Fino Al 600
 
Il sistema solare
Il sistema solareIl sistema solare
Il sistema solare
 
Le distanze in astronomia
Le distanze in astronomiaLe distanze in astronomia
Le distanze in astronomia
 
2.2 metodi velocita radiali e transiti
2.2 metodi velocita radiali e transiti2.2 metodi velocita radiali e transiti
2.2 metodi velocita radiali e transiti
 

More from Massimo Bubani

Solar Astronomy Classe Seconda
Solar Astronomy Classe SecondaSolar Astronomy Classe Seconda
Solar Astronomy Classe SecondaMassimo Bubani
 
villafranca Pescantina
villafranca Pescantinavillafranca Pescantina
villafranca PescantinaMassimo Bubani
 
Slides Esperimenti Svolti Classe Seconda
Slides Esperimenti Svolti Classe SecondaSlides Esperimenti Svolti Classe Seconda
Slides Esperimenti Svolti Classe SecondaMassimo Bubani
 

More from Massimo Bubani (6)

Cadore Villa
Cadore VillaCadore Villa
Cadore Villa
 
Villafranca Cerea
Villafranca  CereaVillafranca  Cerea
Villafranca Cerea
 
Villa Lugagnano 0 - 3
Villa Lugagnano 0 - 3Villa Lugagnano 0 - 3
Villa Lugagnano 0 - 3
 
Solar Astronomy Classe Seconda
Solar Astronomy Classe SecondaSolar Astronomy Classe Seconda
Solar Astronomy Classe Seconda
 
villafranca Pescantina
villafranca Pescantinavillafranca Pescantina
villafranca Pescantina
 
Slides Esperimenti Svolti Classe Seconda
Slides Esperimenti Svolti Classe SecondaSlides Esperimenti Svolti Classe Seconda
Slides Esperimenti Svolti Classe Seconda
 

Recently uploaded

Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...
Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...
Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...Associazione Digital Days
 
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...Associazione Digital Days
 
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...Associazione Digital Days
 
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”Associazione Digital Days
 
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...Associazione Digital Days
 
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...Associazione Digital Days
 
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...Associazione Digital Days
 
Programma Biennale Tecnologia 2024 Torino
Programma Biennale Tecnologia 2024 TorinoProgramma Biennale Tecnologia 2024 Torino
Programma Biennale Tecnologia 2024 TorinoQuotidiano Piemontese
 
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...Associazione Digital Days
 

Recently uploaded (9)

Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...
Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...
Luigi Di Carlo, CEO & Founder @Evometrika srl – “Ruolo della computer vision ...
 
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...
Federico Bottino, Lead Venture Builder – “Riflessioni sull’Innovazione: La Cu...
 
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...
Gabriele Mittica, CEO @Corley Cloud – “Come creare un’azienda “nativa in clou...
 
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”
Edoardo Di Pietro – “Virtual Influencer vs Umano: Rubiamo il lavoro all’AI”
 
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...
Mael Chiabrera, Software Developer; Viola Bongini, Digital Experience Designe...
 
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...
Daniele Lunassi, CEO & Head of Design @Eye Studios – “Creare prodotti e servi...
 
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...
Alessandro Nasi, COO @Djungle Studio – “Cosa delegheresti alla copia di te st...
 
Programma Biennale Tecnologia 2024 Torino
Programma Biennale Tecnologia 2024 TorinoProgramma Biennale Tecnologia 2024 Torino
Programma Biennale Tecnologia 2024 Torino
 
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...
Alessio Mazzotti, Aaron Brancotti; Writer, Screenwriter, Director, UX, Autore...
 

Solar Astronomy Classe Prima

  • 1. LABORATORIO DI ASTRONOMIA SOLARE 1 SOLAR ASTRONOMY Classe Prima Esperienza teorico – pratico sullo studio del Sole
  • 2. Latitudine e Longitudine La latitudine geografica è la distanza angolare di un punto (P) dall'equatore misurata lungo il meridiano che passa per quel punto. La longitudine geografica è la distanza angolare di un punto (P) dal meridiano fondamentale (di Greenwinch), misurata sull'arco di parallelo che passa per quel punto. 2 LABORATORIO DI ASTRONOMIA SOLARE
  • 3. Orizzonte terrestre La superficie terrestre ha una forma approssimativamente sferica ma, ai nostri occhi, ne è visibile solo una piccola parte. Si può immaginare l'orizzonte come una la linea che limita il nostro sguardo e lungo la quale sembra che la Terra e la volta celeste si tocchino. Dal punto di vista astronomico, l'orizzonte delimita la parte della sfera celeste che possiamo osservare. Il piano dell'orizzonte si può materializzare con la superficie di un liquido in quiete (superficie di livello libera), nel punto di osservazione. La perpendicolare ad esso è la verticale del luogo che passa per lo zenit. 3 LABORATORIO DI ASTRONOMIA SOLARE
  • 4. Zenit e Nadir Per verticale del luogo si intende la direzione della gravità nel punto di osservazione, perpendicolare al piano orizzontale. La verticale è materializzata dalla direzione del filo a piombo. Lo zenit è il punto in cui la verticale del luogo interseca la sfera celeste. Il nadir è il punto diametralmente opposto allo zenit, sempre sulla sfera celeste. 4 LABORATORIO DI ASTRONOMIA SOLARE
  • 5. Linea meridiana Per linea meridiana (o semplicemente meridiana) si intende proprio la retta NS che, in quell'istante, si trova nella stessa direzione dell'ombra e giace sul piano orizzontale. Essa identifica la direzione dei punti cardinali SUD (verso il Sole, nel nostro emisfero) e NORD (dalla parte opposta al Sole). La retta EW, perpendicolare alla meridiana passante per O e giacente sul piano orizzontale, identifica le direzioni cardinali EST (a sinistra di chi guarda a sud) e OVEST (a destra). 5 LABORATORIO DI ASTRONOMIA SOLARE
  • 6. Altezza ed Azimut Altezza: è la distanza angolare dall'orizzonte di un punto (T) sulla sfera celeste misurata lungo il cerchio verticale passante per quel punto. Azimut: è l'angolo formato dal piano del cerchio verticale passante per il punto con il piano del meridiano del luogo. 6 LABORATORIO DI ASTRONOMIA SOLARE
  • 7. La culminazione è il passaggio di un corpo celeste attraverso il meridiano astronomico. Si distingue una culminazione superiore o transito come l'attraversamento più vicino allo zenit e la culminazione inferiore come l'attraversamento più lontano dallo zenit. Per le stelle circumpolari e per la Luna, il transito viene detto anche passaggio sopra il polo, mentre la culminazione inferiore si chiama anche passaggio sotto il polo. 7 LABORATORIO DI ASTRONOMIA SOLARE
  • 8. Mezzogiorno vero Il mezzogiorno è, in generale, l'istante di culminazione del Sole in meridiano. Si distingue un mezzogiorno vero, se è riferito alla culminazione del Sole vero e un mezzogiorno medio se si riferisce al Sole medio. La differenza tra i due mezzogiorni corrisponde alla differenza tra il tempo solare vero e il tempo solare medio, è pari cioè all'equazione del tempo. Sia il mezzogiorno vero che quello medio sono istanti locali, dipendono cioè dalla longitudine del luogo di osservazione. Il mezzogiorno civile è invece quello segnato dalle ore 12 degli orologi e differisce dai primi due in funzione della distanza in longitudine del luogo di osservazione rispetto al meridiano centrale del fuso (vedi costante locale). Il mezzogiorno vero è individuato dagli orologi solari. E' possibile determinare il momento del mezzogiorno vero conoscendo la costante locale e l'equazione del tempo. LABORATORIO DI ASTRONOMIA SOLARE 8
  • 9. Giorno medio Il giorno solare medio è l'intervallo di tempo che intercorre tra due successivi passaggi del Sole medio sullo stesso meridiano. Il giorno solare medio ha un valore costante: rappresenta la durata media del giorno solare vero, che invece è variabile nel corso dell'anno. Il giorno solare medio, considerato come unità di misura del tempo solare medio, inizia alla culminazione superiore del Sole medio. L'istante di inizio del giorno solare medio, non è conveniente per usi civili perché porterebbe ad un cambiamento di data nelle ore diurne (a mezzogiorno). Si è introdotto così il giorno civile: esso è un giorno solare medio che inizia alla mezzanotte media, cioè alla culminazione inferiore del Sole medio. LABORATORIO DI ASTRONOMIA SOLARE 9
  • 10. Gnomone E' un'asta verticale infissa nel terreno che nell'antichità serviva per determinare l'ora mediante l'ombra proiettata. Quando l'ombra coincideva con la linea meridiana passante per il piede dell'asta l'ora segnata era il mezzogiorno vero. Lo gnomone è stato inoltre utilizzato per risolvere problemi di fondamentale importanza per l'Astronomia, quali la determinazione della latitudine di un luogo, della obliquità dell'eclittica e della posizione del punto g. Con questo termine si intende anche, in generale, lo stilo di un orologio solare, che non è necessariamente verticale. 10 LABORATORIO DI ASTRONOMIA SOLARE
  • 11. Moto apparente del Sole La Terra ruota attorno al Sole in senso antiorario rispetto ad un osservatore boreale con un periodo detto anno sidereo. Il piano dell'equatore non è parallelo al piano dell'orbita attorno al Sole ma è inclinato di circa 23°,5 (23° 27') rispetto ad esso (obliquità dell'eclittica). Tale inclinazione, che in prima approssimazione è di misura e orientamento costanti, fa sì che la Terra nel corso dell'anno si trovi in quattro disposizioni caratteristiche rispetto al Sole. I quattro punti particolari dell'eclittica e i momenti dell'anno in cui il Sole vi si trova vengono chiamati equinozi e solstizi. LABORATORIO DI ASTRONOMIA SOLARE 11
  • 12. Le stagioni Solstizio d'estate (21-22 giugno circa): il raggio vettore (segmento che congiunge il centro del Sole con il centro della Terra) è inclinato di 23°,5 rispetto al piano dell'equatore e interseca la superficie terrestre in un punto dell'emisfero boreale (estate boreale e inverno australe). Equinozio d'autunno (circa 23 settembre): il raggio vettore interseca l'equatore terrestre nel Punto della Bilancia, procedendo dall'emisfere celeste boreale a quello australe. Solstizio d'inverno (circa 22 dicembre): il raggio vettore è inclinato di 23°,5 rispetto all'equatore e interseca la superficie terrestre in un punto dell'emisfero australe(inverno boreale ed estate australe). Equinozio di primavera (intorno al 22 marzo): il raggio vettore torna a intersecare l'equatore nel Punto gamma, procedendo dall'emisfero celeste australe a quello boreale. LABORATORIO DI ASTRONOMIA SOLARE 12
  • 13. Esperimento N°1Moto apparente del Sole Per realizzare l’esperimento procediamo nel seguente modo: Posizioniamo i banchi in modo che tutti i mesi la luce del Sole arrivi sullo gnomone; Attaccare i cartelloni ai banchi e lo gnomone in posizione centrale; Ogni due settimane ad intervalli di 30’ segnare la posizione dell’ombra proiettata dallo gnomone; Ripetere questa procedura per quattro mesi; Unire i punti dello stesso colore realizzando le curve proiettate dallo gnomone. 13 LABORATORIO DI ASTRONOMIA SOLARE
  • 14.
  • 15. Si osserva il fenomeno delle stagioni. Tale fenomeno è dovuto all’inclinazione dell’asse terrestre;
  • 16. Nelle stagioni invernali si osserva una linea molto curva con la concavità rivolta verso l’alto.
  • 17. Durante il periodo invernale, le curve si formano lontano allo gnomone. Questo è dovuto al fatto che il Sole è basso sull’orizzonte e quindi le ombre sono più lunghe.
  • 18. Nei giorni vicini all’equinozio di primavera, le curve si avvicinano allo gnomone e diventano quasi delle rette. Questo si spiega con il fatto che il Sole si alza maggiormente rispetto all’orizzonte e percorre, nel cielo un,orbita meno arcuata.LABORATORIO DI ASTRONOMIA SOLARE 14 Osservazioni finali
  • 19. Questo secondo esperimento ci ha permesso di realizzare alcuni semplici strumenti di misurazione della posizione del Sole. Con l’aiuto del professore siamo riusciti a realizzare i seguenti strumenti. Tutti questi strumenti ci hanno permesso di svolgere numerose misure dell’altezza del Sole, dell’azimut solare e per quanto riguarda le meridiane di misurare lo scorrere del tempo. Quadranti mobili Quadranti fissi Sestanti Teodoliti Meridiane analemmatiche Orologi solari LABORATORIO DI ASTRONOMIA SOLARE 15 Esperimento N°2 – Strumenti
  • 20. Strumenti di misurazione Quadrante fisso LABORATORIO DI ASTRONOMIA SOLARE 16
  • 21. Strumenti di misurazione Quadrante mobile LABORATORIO DI ASTRONOMIA SOLARE 17
  • 22. Strumenti di misurazione Sestanti LABORATORIO DI ASTRONOMIA SOLARE 18
  • 23. Strumenti di misurazione Teodolite munito di cannocchiale kepleriano LABORATORIO DI ASTRONOMIA SOLARE 19
  • 24. Strumenti di misurazione Teodoliti LABORATORIO DI ASTRONOMIA SOLARE 20
  • 25. Strumenti di misurazione Meridiana analemmatica LABORATORIO DI ASTRONOMIA SOLARE 21
  • 26. Strumenti di misurazione Meridiana analemmatica LABORATORIO DI ASTRONOMIA SOLARE 22
  • 27. Strumenti di misurazione Orologio solare LABORATORIO DI ASTRONOMIA SOLARE 23
  • 28. Esperimento N°3 - misura dell’altezza del Sole L'altezza del Sole (angolo α) si può misurare con buona precisione anche con strumenti molto semplici. Tutti i metodi che abbiamo trovato si basano sulla proiezione dell'ombra di uno stilo verticale (o gnomone) sul piano orizzontale, da cui si individua un triangolo rettangolo ABC, dove AC rappresenta la proiezione di un raggio solare, l'angolo α corrisponde all’altezza del sole sull’orizzonte, AB è lo gnomone e CB la sua ombra . Il triangolo ABC può essere geometricamente utile per la misura diretta o indiretta dell'angolo α. 24 LABORATORIO DI ASTRONOMIA SOLARE
  • 29. La nostra base gnomonica Noi abbiamo usato una serie di gnomoni di carta puntati su una base di polistirolo divisa in 12 caselle ognuna delle quali occupata da uno gnomone. I ragazzi, ad una data ora, puntano uno spillo sulla base dello gnomone ed uno in corrispondenza dell’ombra proiettata dall’estremità superiore dello stesso. 25 LABORATORIO DI ASTRONOMIA SOLARE
  • 30. Il triangolo del Sole Successivamente, utilizzando un doppio decimetro, hanno determinato la lunghezza dell’ombra di ogni singolo gnomone. Questo ha permesso di disegnare sulla carta millimetrata, per ogni singolo gnomone, un triangolo simile al triangolo ACB disegnato in figura per cui l’angolo α sul foglio millimetrato rappresenta (per le proprietà dei triangoli simili) l’altezza del Sole in quel determinato momento della giornata. 26 LABORATORIO DI ASTRONOMIA SOLARE
  • 31. Esperimento N°4 – Misura del meridiano terrestre Per il secondo anno consecutivo, la nostra scuola ha partecipato alla settimana nazionale dell’astronomia. Uno degli obiettivi di questo anno è stato la misura del meridiano terrestre effettuata in collaborazione altre scuole sparse sul territorio europeo. LABORATORIO DI ASTRONOMIA SOLARE 27
  • 32. Premessa storica Eratostene, nel III secolo avanti Cristo, realizzò la prima misurazione delle dimensioni della Terra. Egli si accorse infatti che, a mezzogiorno del solstizio d'estate, a Siene (l'attuale Assuan) i raggi solari cadevano verticalmente illuminando il fondo dei pozzi. Ciò invece non accadeva ad Alessandria d'Egitto: qui formavano un angolo di 7,2° rispetto alla verticale del luogo. Eratostene assunse che la forma della Terra fosse sferica e che i raggi solari fossero paralleli. Di conseguenza, l'angolo di 7,2° è uguale all'angolo che ha per vertice il centro della Terra e i cui lati passano rispettivamente per Alessandria e per Siene. L’angolo di 7,2° è un cinquantesimo dell’angolo giro e quindi anche la distanza tra le due città (un arco di circonferenza massima) deve essere un cinquantesimo della circonferenza terrestre. A quel tempo, la distanza tra Alessandria e Siene era considerata di 5.000 stadi che, moltiplicato per 50, dava una misura di 250.000 stadi: era la prima determinazione della circonferenza della Terra basata su un metodo scientificamente valido. Secondo alcuni storici uno stadio corrispondeva a 157,5 metri attuali e quindi la circonferenza terrestre, stimata da Eratostene, era di 39.690 chilometri: un dato di sconcertante attualità! LABORATORIO DI ASTRONOMIA SOLARE 28
  • 33. Elenco scuole partecipanti Istituto Comprensivo “A. Pisano” di Caldiero (Verona) sede di Belfiore – referente – Massimo Bubani Liceo Scientifico “E. Onorato” di Lucera (Foggia) – referente Lucia Ciuffreda Scuola Media Statale “G. Caloprese” di Scalea (Cosenza) referente – Giuseppe Castelli Scuola europea di Karlsruhe (Karlsruhe) – referente – Ugo ghigne Istituto Comprensivo “Einaudi” di Lequio Tanaro (Cuneo) – referente Giuseppe Rolfo Istituto Comprensivo di S. Ilario d’Enza (Reggio Emilia) – referente William Cavazioni Scuola Europea (Francoforte FrankfurtamMain) – referente Daniela Bovi LABORATORIO DI ASTRONOMIA SOLARE 29
  • 34. Il metodo Il metodo si basa sulla determinazione della lunghezza dell’ombra b proiettata da parte di uno gnomone di altezza h e la misurazione dell’angolo a che i raggi solari formano con il piano orizzontale. Gli alunni hanno realizzato 12 gnomoni in cartoncino che sono stati posizionati su di una base in polistirolo perfettamente planare. Tutti gli gnomoni sono stati accuratamente posizionati all’interno delle proprie postazioni in modo da verificare, per ognuno, la verticalità. Tutte le misure di lunghezza sono state ottenute utilizzando righe, squadre e righelli con sensibilità di 1mm. 30 LABORATORIO DI ASTRONOMIA SOLARE
  • 35. Procedimento Per misurare l’altezza del Sole abbiamo utilizzato due tecniche differenti. La prima misurazione è stata ottenuta riportando il triangolo del Sole su di un foglio di carta millimetrata con l’accortezza di riportare dimezzate entrambe le misure dei cateti per farle rientrare all’interno del foglio formato A4. La seconda misurazione, che corrisponde anche ad una verifica della prima tecnica, è stata eseguita utilizzando il modulo di calcolo presente all’indirizzo www.vialattea.net/eratostene/altezza/arctan.html, all’interno del sito proprio della Rete di Eratostene. LABORATORIO DI ASTRONOMIA SOLARE 31
  • 36. Distanza tra le scuole Per calcolare la distanza tra le due località (arco di meridiano terrestre) abbiamo utilizzato una carta geografica dell’Italia in scala 1:1000000. Tuttavia, le località interessate dalle misurazioni, non si trovano sullo stesso meridiano terrestre, per cui abbiamo dovuto trasportare idealmente una delle località sul meridiano dell’altra e utilizzare come distanza proprio il segmento che unisce questi due punti sulla carta geografica moltiplicato per il fattore di scala. 32 LABORATORIO DI ASTRONOMIA SOLARE
  • 37. Il calcolo delle distanze Ad esempio se la distanza tra le due località (con la correzione di cui sopra) è di 250 mm, l’arco di meridiano corrisponde a: d = (250 ± 1) mm x 1000000 = (250 ± 1) km. LABORATORIO DI ASTRONOMIA SOLARE 33
  • 38. Calcolo del meridiano terrestre Per determinare la misura del meridiano terrestre abbiamo seguito la seguente procedura operativa: si calcola la distanza d tra le due località in linea d’aria situate virtualmente sullo stesso meridiano; si calcolano le 12 misure dell’altezza del Sole come indicato in precedenza; si determina la media aritmetica; si calcola l’errore della media calcolando la semidistersione; Erramedio = (amax-amin):2 si calcola la differenza .a delle altezze del Sole tra le due località tenendo conto anche degli errori sperimentali; si calcola la circonferenza terrestre C corrispondente al meridiano secondo la proporzione: 360 : C = a : d dalla quale si ricava facilmente C = 360xd/ a RTerra = C/2p. LABORATORIO DI ASTRONOMIA SOLARE 34
  • 39. Prima misura LABORATORIO DI ASTRONOMIA SOLARE 35
  • 40. Seconda misura LABORATORIO DI ASTRONOMIA SOLARE 36
  • 41. Terza misura LABORATORIO DI ASTRONOMIA SOLARE 37
  • 42. Riassunto di tutte le misure effettuate LABORATORIO DI ASTRONOMIA SOLARE 38
  • 43. Conclusioni Sulla base dei dati ottenuti, abbiamo infine calcolato il valore medio del meridiano terrestre ed il corrispondente raggio della Terra: Circonferenza della Terra (valore medio) = 39728 km Raggio della Terra (valore medio) = 6326 km Confrontando il valore ottenuto con quello teorico possiamo verificare di quanto abbiamo sbagliato. Errore commesso = 6371 km – 6326 km = 45 km! Un errore di 45 km su 6371 km corrisponde ad un errore percentuale di 0,7%. Per essere stata una esperienza didattica abbiamo ricavato un valore veramente vicino a quello corretto. LABORATORIO DI ASTRONOMIA SOLARE 39