Successfully reported this slideshow.
Upcoming SlideShare
×

# 4.5 solve by finding square roots

3,223 views

Published on

Published in: Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

### 4.5 solve by finding square roots

1. 1. Simplifying Radicals The Algebra of Solving Equations
2. 2.  Test the radicand (number inside the radical) for divisibility by numbers that are perfect squares.  Rewrite the radicand as a product of a perfect square and another number.  Take the square root of the perfect square and write the result in front of the radical.
3. 3. 20 2 2 4 2 3 9 2 4 16 2 5 25 2 6 36 4 5 2 5
4. 4. 48 2 2 4 2 3 9 2 4 16 2 5 25 2 6 36 16 3 4 3
5. 5. 27 49 2 2 4 2 3 9 2 4 16 2 5 25 2 6 36 9 3 49  3 3 7 27 49  2 7 49
6. 6. 5 2 3 7 5 3 2 7   15 2 7  15 14
7. 7. 3 12 2 15 3 4 3 2 15  3 2 3 2 15  6 3 2 15 12 45 12 9 5 36 5
8. 8. 13 2 13 2  13 2 2 2  26 4 26 2
9. 9. 21 6 21 6  21 6 6 6  126 36 126 6 9 14 6  3 14 6 14 2
10. 10. 2 81x  2 81 0x     9 9 0x x   9, 9x  
11. 11. 2 81x  9, 9x   2 81x   9x  
12. 12. 2 40x  2 10, 2 10x   2 40x   2 10x  
13. 13. 2 7 43x   5 2, 5 2x   2 50x   5 2x   2 50x 
14. 14. 2 4 11 59x   2 3, 2 3x   2 12x   2 3x   2 4 48x  2 12x 
15. 15.   2 7 60x   7 2 15, 7 2 15x      2 7 60x    7 2 15x    7 2 15x  
16. 16. p. 269 # 3 - 10, 22 - 33, 39, 40, 42