Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
The OSI Model , TCP/IPThe OSI Model , TCP/IP
Protocol Suite and IPProtocol Suite and IP
AdAdddressingressing
By:
Marwan Ma...
Contents
 The OSImo del
 Layers in the OSI Model
 Organization of the Layers in OSI
 TCP/IP Protocol Suite
 Compariso...
The OSImo del
 International Standards Organization (ISO) is a multinational body
dedicated to worldwide agreement on int...
The Layers OSImo del
 The OSI model is composed of seven ordered layers:
physical (layer 1), data link(layer 2), network ...
The Organizatio n OF OSIlayers
Figure 1.2
An exchange using the OSI model
1.PhysicalLayer
1.Physical Layer : coordinates the functions required to carry a bit stream over a
physical medium. It dea...
Physical Layer
Figure 1.3
Figure 1.4 Figure 1.5
Figure 1.5
Data Link Layer
Other responsibilities of the data link layer include the following :
 Framing: divides the stream of bit...
Data Link Layer
Figure 1.6
Netwo rk Layer
Other responsibilities of the network layer include the following:
 Logical addressing. packet passes the ...
Netwo rk Layer
Figure 1.7
Transport Layer
Other responsibilities of the transport layer include the following
 Service-point addressing. the transp...
Session Layer
Specific responsibilities of the session layer include the following:
 Dialog control. It to allows the com...
Presentation Layer

Specific responsibilities of the presentation layer include the following:
 Translation . The proces...
Application Layer
Specific services provided by the application layer include the following:
 Network virtual terminal. I...
TCP/IP Protocol Suite
The TCP/IP protocol suite was developed prior to the OSI model. Therefore, the
layers in the TCP/IP ...
TCP/IP Protocol Suite
Physical LayerPhysical Layer
 It supports all of the standard and proprietary protocols.
 At this ...
TCP/IP Protocol Suite
TCP/IP Protocol Suite
Data Link Layer
TCP/IP does not define any specific protocol for the data link layer either.
It supp...
m
TCP/IP Protocol Suite
Network LayerNetwork Layer
At the network layer (or, more accurately, the internetwork layer), TCP/I...
TCP/IP Protocol Suite
Transport Layer
 There is a main difference between the transport layer and the network layer.
Alth...
TCP/IP Protocol Suite
Application LayerApplication Layer
It is combination of application ,presentation and session layer ...
Comparison between OSI and TCP/IP Protocol SuiteComparison between OSI and TCP/IP Protocol Suite
 OSI model has seven lay...
Comparison between OSI and TCP/IP Protocol SuiteComparison between OSI and TCP/IP Protocol Suite
Figure 1.12
Relationship of layers and addresses in TCP/IPRelationship of layers and addresses in TCP/IP
Figure 1.13
AddressingAddressing
there are four type of addresses are used in an internet employing the TCP/IP
protocols: physical add...
AddressingAddressing
Physical Addresses
 The physical address, also known as the link address, is the address of a node a...
Physical Addresses
Example 2: in figure 1.15 a node with physical address 10 sends a frame to a
node with physical address...
AddressingAddressing
2.Logical Addresses
 Logical addresses are used by networking software to allow packets to be
indepe...
Example 3
 The computer with logical address A and physical address 10 needs to
send a packet to the computer with logica...
AddressingAddressing
3.Port Addresses
 There are many application running on the computer. Each application run with a
po...
Example 3
 Example of transport layer communication. Data coming from the
upperlayers have port addresses j and k ( j is ...
AddressingAddressing
44..Application-Specific AddressesApplication-Specific Addresses
Some applications have user-friendly addresses that are d...
SummarySummary
OSIOSI
 The International Standards Organization (ISO) created a model called the Open
Systems Interconnec...
SummarySummary
fig
m
Osi , tcp/ip protocol and Addressing
Osi , tcp/ip protocol and Addressing
Osi , tcp/ip protocol and Addressing
Osi , tcp/ip protocol and Addressing
Upcoming SlideShare
Loading in …5
×
Upcoming SlideShare
Database - Entity Relationship Diagram (ERD)
Next
Download to read offline and view in fullscreen.

21

Share

Download to read offline

Osi , tcp/ip protocol and Addressing

Download to read offline

osi and tcp/ip layers , how can work ,the differences beteen them , and desicrbe for all typs of addressing

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all

Osi , tcp/ip protocol and Addressing

  1. 1. The OSI Model , TCP/IPThe OSI Model , TCP/IP Protocol Suite and IPProtocol Suite and IP AdAdddressingressing By: Marwan Majeed Nayyfe DR.abd alkareem Alanbar Univercity
  2. 2. Contents  The OSImo del  Layers in the OSI Model  Organization of the Layers in OSI  TCP/IP Protocol Suite  Comparison between OSI and TCP/IP Protocol Suite  Relationship of layers and addresses inTCP/IP  Addressing  Summery
  3. 3. The OSImo del  International Standards Organization (ISO) is a multinational body dedicated to worldwide agreement on international standards. . It was first introduced in the late 1970s.  An ISO standard that covers all aspects of network communications is the Open Systems Interconnection (OSI) model  OSIOSI stands for Open Systems Interconnection  Created by International Standards Organization  open system is a set of protocols that allows any two different systems to communicate regardless of their underlying architecture. The main purpose of the OSI model : Is to show how to facilitate communication between different systems without requiring changes to the logic of the underlying hardware and software
  4. 4. The Layers OSImo del  The OSI model is composed of seven ordered layers: physical (layer 1), data link(layer 2), network (layer 3), transport (layer 4), session (layer 5), presentation (layer 6),and application (layer 7)  Headers are added to the data at layers 6, 5, 4, 3, and 2. Trailers are usually added only at layer 2. The job of OSI model is travels message from source-to-destination , it may pass through many intermediate nodes. These intermediate nodes usually involve on the first three layers of the OSI model
  5. 5. The Organizatio n OF OSIlayers Figure 1.2
  6. 6. An exchange using the OSI model
  7. 7. 1.PhysicalLayer 1.Physical Layer : coordinates the functions required to carry a bit stream over a physical medium. It deals with the mechanical and electrical specifications of the interface and transmission media. show in figure 1.3 The physical layer is also concerned with the following:  Physical characteristics of interfaces and media:It defines characterstics of interface between two devices  Representation of bits. Represent by (0 s&1 s)  Data rate :the number of bits sent each second .  Synchronization of bits:the sender and receiver not use the same bit rate  but also must be synchronized at the bit level  Line confiuration :concerned with the connection of devices to the media. In a point-to-point configuration, multipoint configuration  Physical topology : show in figure 1.4  Transmission mode : show in figure 1.5 The main purpose :The physical layer is responsible for the movement of individual bits from one hop (node) to the next.
  8. 8. Physical Layer Figure 1.3 Figure 1.4 Figure 1.5 Figure 1.5
  9. 9. Data Link Layer Other responsibilities of the data link layer include the following :  Framing: divides the stream of bits into manageable data called frames.  Physical addressing :Add header to the frame to define the sender and/or receiver of the frame.  Flow control: regulates the amount of data that can be transmitted at one time  Error control: achieved through a trailer added to the end of the frame to detect and retransmit damaged or lost frames.  Access control: used for determining the sequence of device at access time. The main purpose : The data link layer is responsible for moving frames from one hop (node) to the next.
  10. 10. Data Link Layer Figure 1.6
  11. 11. Netwo rk Layer Other responsibilities of the network layer include the following:  Logical addressing. packet passes the network boundary.we need another addressing system to help distinguish the source and destination systems.  Routing: When independent networks or links are connected together to create internetworks (network of networks)the connecting devices or a large network(called routers or switches) route or switch the packets to their final destination.  Show in figure 1.7 The main purpose : it is responsible for the delivery of individual packets from the source host to the destination host. When the two systems are attached to different networks
  12. 12. Netwo rk Layer Figure 1.7
  13. 13. Transport Layer Other responsibilities of the transport layer include the following  Service-point addressing. the transport layer gets the entire message to the correct process on that computer.  Segmentation and reassembly. A message is divided into transmittable segments, with each segment containing a sequence number. These numbers enable the transport layer to reassemble the message correctly upon arriving at the destination  Connection control. The transport layer can be either connectionless UDP or Connection oriented TCP .  Flow control. flow control at this layer is performed end to end rather than across a single link. regulates the amount of data that can be transmited at one time  Error control. The sending transport layer makes sure that the entire message arrives at the receiving transport layer without error (damage, loss, or duplication). Error correction is usually achieved through retransmission. The transport layer it is responsible for process-to-process delivery of the entire message and error recovery
  14. 14. Session Layer Specific responsibilities of the session layer include the following:  Dialog control. It to allows the communication between two processes: take place in either half duplex (one way at a time) or full-duplex (two ways at time) mode  Synchronization. The session layer allows a process to add checkpoints (synchronization points) into a stream of data. For example, if a system is sending a file of 2,000 pages, it is advisable to insert checkpoints after every 100 pages to ensure that each 100-page unit is received and acknowledged independently. session layer is the network dialog controller. It establishes, maintains, and synchronizes the interaction between communicating systems.
  15. 15. Presentation Layer  Specific responsibilities of the presentation layer include the following:  Translation . The processes (running programs) in two systems are usually exchanging information in the form of character strings, numbers, and so on. Because different computers use different encoding systems.  Encryption. To carry sensitive information a system must be able to assure privacy.  Compression. Data compression reduces the number of bits contained in the information. such as text, audio, and video. The presentation layer is concerned with the syntax and semantics of the information exchanged between two systems
  16. 16. Application Layer Specific services provided by the application layer include the following:  Network virtual terminal. It is a software version of a physical terminal and allows a user to log on to a remote host  File transfer, access, and management (FTAM). This application allows a user to access files in a remote host (to make changes or read data.  E-mail services. This application provides the basis for e-mail forwarding and storage.  Directory services. This application provides distributed database sources and access for global information about various objects and services. The main purpose :. It provides user interfaces and support for services such as electronic mail, remote file access and transfer and other types of distributed information services.
  17. 17. TCP/IP Protocol Suite The TCP/IP protocol suite was developed prior to the OSI model. Therefore, the layers in the TCP/IP protocol suite do not match exactly with those in the OSI model. The original TCP/IP protocol suite was defined as four software layers built upon the hardware. Today, however, TCP/IP is thought of as a five-layer model with the layers named similarly to the ones in the OSI model. The topics that well be discussed: Physical Layers Data link layer Network Layer Transport Layer Application Layer
  18. 18. TCP/IP Protocol Suite Physical LayerPhysical Layer  It supports all of the standard and proprietary protocols.  At this level, the communication is between two hops or nodes, either a computer or router.  The unit of communication is a single bit.  When the connection is established between the two nodes, a stream of bits is flowing between them.  The physical layer, however, treats each bit individually
  19. 19. TCP/IP Protocol Suite
  20. 20. TCP/IP Protocol Suite Data Link Layer TCP/IP does not define any specific protocol for the data link layer either. It supports all of the standard and proprietary protocols. At this level, the communication is also between two hops or nodes. The unit of communication however, is a packet called frame. A frame is a packet that encapsulates the data received from the network layer with an added header and sometimes a trailer. The head, among other communication information, includes the source and destination of frame. The destination address is needed to define the right recipient of the frame because many nodes may have been connected to the link. The source address is needed for possible response or acknowledgment as may be required by some protocols. Figure 1.11 shows the communication at the data link layer
  21. 21. m
  22. 22. TCP/IP Protocol Suite Network LayerNetwork Layer At the network layer (or, more accurately, the internetwork layer), TCP/IP supports the Internet Protocol (IP). The Internet Protocol (IP) is the transmission mechanism used by the TCP/IP protocols. IP transports data in packets called datagram's, each of which is transported separately. Datagrams can travel along different routes and can arrive out of sequence or be duplicated. IP does not keep track of the routes and has no facility for reordering datagrams once they arrive at their destination. Figure 1.10 shows the communication at the network layer. The network layer is responsible for sending individual datagrams from computer A to B.
  23. 23. TCP/IP Protocol Suite Transport Layer  There is a main difference between the transport layer and the network layer. Although all nodes in a network need to have the network layer, only the two end computers need to have the transport layer.the transport layer is responsible for delivering the whole message, which is called a segment,  the transport layer was represented in the TCP/IP suite by two protocols: User Datagram Protocol (UDP) and Transmission Control Protocol (TCP).  The unit of communication at the transport layer is a segment, user datagram, or a packet, depending on the specific protocol used in this layer.
  24. 24. TCP/IP Protocol Suite Application LayerApplication Layer It is combination of application ,presentation and session layer of OSI model .  this layer provided various services to different user application.  It is include high level protocol that are used for wide verity application like:  TELNET(Terminal Network) : used for remote login.  FTP(File Transfer Protocol) : used for transfer of file from one system to another.  HTTP(Hyper Text Transfer Protocol)|: for fetching web pages on WWW The unit of communication at the application layer is a message show in Figure 1.12
  25. 25. Comparison between OSI and TCP/IP Protocol SuiteComparison between OSI and TCP/IP Protocol Suite  OSI model has seven layer.  In TCP/IP we find that two layers, session and presentation, are missing.  OSI model provide clear destination between services , interface and protocol.  TCP/IP doesn’t provide clear destination between services , interface and protocol.  In OSI transport layer is connection oriented.  In TCP/IP transport layer is both connection oriented and connectionless.  . Protocol do not fit well into OSI model .  Protocol fit well in TCP/IP model.  Minimum size of OSI header is 5 bytes.  In TCP/IP minimum size of the header is 20 bytes.
  26. 26. Comparison between OSI and TCP/IP Protocol SuiteComparison between OSI and TCP/IP Protocol Suite Figure 1.12
  27. 27. Relationship of layers and addresses in TCP/IPRelationship of layers and addresses in TCP/IP Figure 1.13
  28. 28. AddressingAddressing there are four type of addresses are used in an internet employing the TCP/IP protocols: physical address, logical address, port address, and application- specific address. Each address is related to a one layer in the TCP/IP architecture . show in this figure
  29. 29. AddressingAddressing Physical Addresses  The physical address, also known as the link address, is the address of a node as defined by its LAN or WAN. It is included in the frame used by the data link layer. It is the lowest-level address. The physical addresses have authority over the link (LAN or WAN). The size and format of these addresses vary depending on the network. For example, Ethernet uses a 6-byte (48-bit) physical address.  Physical addresses can be either unicast (one single recipient), multicast (a group of recipients), or broadcast (to be received by all systems in the network. Example 1 : Most local area networks use a 48-bit (6-byte) physical address written as 12 hexadecimal digits; every byte (2 hexadecimal digits) is separated by a colon, as shown below: A 6-byte (12 hexadecimal digits) physical address 07:01:02:01:2C:4B
  30. 30. Physical Addresses Example 2: in figure 1.15 a node with physical address 10 sends a frame to a node with physical address 87. The two nodes are connected by a link. At the data link level this frame contains physical (link) addresses in the header. These are the only addresses needed. The rest of the header contains other information needed at this level. The trailer usually contains extra bits needed for error detection.
  31. 31. AddressingAddressing 2.Logical Addresses  Logical addresses are used by networking software to allow packets to be independent of the physical connection of the network, that is, to work with different network topologies and types of media  A logical address in the Internet is currently a 32-bit address that can uniquely define a host connected to the Internet. An internet address in IPv4 in decimal numbers  132.24.75.9  No two publicly addressed and visible hosts on the Internet can have the same IP address.  The physical addresses will change from hop to hop, but the logical addresses remain the same
  32. 32. Example 3  The computer with logical address A and physical address 10 needs to send a packet to the computer with logical address P and physical address 95. We use letters to show the logical addresses and numbers for physical addresses. The sender encapsulates its data in a packet at the network layer and adds two logical addresses (A and P) remain the same from the original source to the final destination. They will not change when we go from network to network. However, the physical addresses will change as the packet moves from one network to another.  The router decapsulates the packet from the frame to read the logical destination address P.  The destination logical address P matches the logical address of the computer. Show in figure 1.16
  33. 33. AddressingAddressing 3.Port Addresses  There are many application running on the computer. Each application run with a port no.(logically) on the computer.  A port number is part of the addressing information used to identify the senders and receivers of messages.  Port numbers are most commonly used with TCP/IP connections.  These port numbers allow different applications on the same computer to share network resources simultaneously.  The physical addresses change from hop to hop, but the logical and port addresses usually remain the same.
  34. 34. Example 3  Example of transport layer communication. Data coming from the upperlayers have port addresses j and k ( j is the address of the sending process, and k is the address of the receiving process). Since the data size is larger than the network layer can handle, the data are split into two packets, each packet retaining the service-point addresses ( j and k). Then in the network layer, network addresses (A and P) are added to each packet.  The packets can travel on different paths and arrive at the destination either in order or out of order. The two packets are delivered to the destination transport layer, which is responsible for removing the network layer headers and combining the two pieces of data for delivery to the upper layers.
  35. 35. AddressingAddressing
  36. 36. 44..Application-Specific AddressesApplication-Specific Addresses Some applications have user-friendly addresses that are designed for that specific application. Examples include the e-mail address (for example, forouzan@fhda.edu) and the Universal Resource Locator (URL) (for example, www.mhhe.com). The first defines the recipient of an e-mail; the second is used to find a document on the World Wide Web. These addresses, however, get changed to the corresponding port and logical addresses by the sending computer
  37. 37. SummarySummary OSIOSI  The International Standards Organization (ISO) created a model called the Open Systems Interconnection (OSI), which allows diverse systems to communicate. The seven-layer OSI model provides guidelines for the development of universally compatible networking protocols. The physical, data link, and network layers are the network support layers. The session, presentation, and application layers are the user support layers. The transport layer links the network support layers and the user support layers.  The physical layer coordinates the functions required to transmit a bit stream over a physical medium. The data link layer is responsible for delivering data units TCPIPTCPIP  The Application layer of the TCP/IP Model encompasses the same functions as the Application, Presentation, and Session layers of the OSI Model.  The Transport layer of the TCP/IP Model functions the same as the Transport layer in OSI Model and part of Session layer.  The Internet of layer of the TCP/IP Model Performs the same functions as the OSI Model Network layer and many of the functions of the LLC sub layer of the OSI Model Data Link layer.
  38. 38. SummarySummary fig
  39. 39. m
  • ssuser4e94cd

    Dec. 25, 2020
  • RahulTiwari474

    Nov. 6, 2020
  • MukulVaishnav5

    Oct. 3, 2020
  • SitiAishah175

    Sep. 19, 2019
  • Suruchivaidya

    May. 9, 2019
  • RohitChaurasia26

    May. 3, 2019
  • mahender1987

    Mar. 19, 2019
  • TufailAhmad52

    Mar. 11, 2019
  • ChauhanPriya1

    Dec. 2, 2018
  • varunBatra25

    Sep. 5, 2018
  • 115488

    Jul. 31, 2018
  • PrashantTiwari150

    May. 15, 2018
  • arifulshuvo1

    Mar. 5, 2018
  • HellySoni1

    Jan. 22, 2018
  • CorneaCostea

    Jan. 9, 2018
  • PenielLogossou

    Nov. 6, 2017
  • yuvrajsinghkashyap

    Sep. 10, 2017
  • hunk007rvs

    Aug. 18, 2017
  • PaulWalkerBamouni

    Oct. 29, 2016
  • yaaqobaljamali

    Oct. 4, 2016

osi and tcp/ip layers , how can work ,the differences beteen them , and desicrbe for all typs of addressing

Views

Total views

9,996

On Slideshare

0

From embeds

0

Number of embeds

18

Actions

Downloads

314

Shares

0

Comments

0

Likes

21

×