Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

ANR GEOMEDIA project

721 views

Published on

A geomedia sensor for international events

Published in: Education, Technology
  • Be the first to comment

ANR GEOMEDIA project

  1. 1. A geomedia sensor for international events ANR GEOMEDIA project M. Severo (Université Lille 3 / GIS-CIST)
  2. 2. What is the Geomedia analysis? 2
  3. 3. First experiences Monthly variation of media weight of the string "climate change" in the G20 countries. Source : FACTIVA august 2008 – july2010, standardized and smoothed over three months
  4. 4. Spatio-temporal filtering The exemple of media relative peak Guerre civile en côte d’Ivoire Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  5. 5. Spatio-temporal filtering The exemple of media relative peak Révolution en Tunisie « Printemps Arabe » Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  6. 6. Spatio-temporal filtering The exemple of media relative peak Révolution en Egypte Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  7. 7. Spatio-temporal filtering The exemple of media relative peak Catastrophe de Fukushima Révolution en Libye Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  8. 8. Spatio-temporal filtering The exemple of media relative peak Affaire StraussKahn Fin de la guerre civile en Côte d’Ivoire Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  9. 9. Eruption manquée du Grimsvötn Spatio-temporal filtering The exemple of media relative peak Mort de Ben Laden Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  10. 10. Spatio-temporal filtering The exemple of media relative peak Crise de l’Euro en Grèce Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  11. 11. Spatio-temporal filtering Tuerie d’Oslo The exemple of media relative peak Famine en Afrique orientale Dec – Jan – Fev – Mar – Avr – Mai – Jun - Jul
  12. 12. ANR Geomedia Project •  Project : ANR corpus 2013-2015 •  Team: GIS CIST (geography, geomatics, media studies, computer science)
  13. 13. ANR Geomedia Project •  Goal: Build an observatory of international media flows •  Two research questions: •  The data •  The methods
  14. 14. The data Commercial database (Factiva, LexisNexis, Europresse..) Newspaper RSS feeds
  15. 15. Type of RSS feeds •  One feed for one newspaper •  Several feeds: Homepage Thematic (international..) Regional or local A feed per page ….
  16. 16. Advantages of RSS feeds •  •  •  •  Available in large quantities known sources Short and easily accessible information Suitable for quali-quantitative analysis
  17. 17. Geomedia database 132 feeds from 41 countries in English and French
  18. 18. The methods •  Why do we study geomedia big data? •  4 independent data dimensions: 1)  Spatial dimension 2)  Temporal dimension 3)  Thematic dimension 4)  Dimension of the source
  19. 19. Spatial analysis Spatial analysis of the frequency of citation or co-citation of Syria in international RSS flows RSS of 4 newspapers during a predefined period of time. Giraud, T., Grasland C, Lamarche-Perrin R., Demazeau Y., Vicent J-M, 2013, « Identification of international media events by spatial and temporal aggregation of newspapers rss flows. Application to the case of the Syrian Civil War between May 2011 and December 2012 », Procceding ECTQG 2013, Paris
  20. 20. Flux RSS Times of India – World News Date of publication 26/08/2013 - 02:01 Title La liste des pays cités n’est pas fournie par le journal mais construite à l’aide d’une analyse du titre et du résumé … ce qui soulève pas mal de questions … Abstract…
  21. 21. Sender Time Space Ex. Flux RSS international du journal « Times of India » Year, month, week, day (and possibly time) of publication of an item. List of countries identified in the contents of the title or abstract of an RSS feed using a targeted search keywords or regular operations.
  22. 22. Citations of Syria
  23. 23. Co-citation of Syria with other countries Le Monde (FRA) International RSS Le Monde (FRA) International RSS Times of India (IND) World RSSIndia (IND) Times of World RSS Financial Times (GBR) World RSS Times (GBR) Financial World RSS Washington Post (USA) World RSS Washington Post (USA) World RSS
  24. 24. Le Monde - International 24
  25. 25. Financial Time - International 25
  26. 26. The Washington Post - International 26
  27. 27. The Times of India - International 27
  28. 28. Ambiguity of country name Inequality of occurrences of some countries in RSS of the Guardian depending on the mode of identification (JanuaryNovember 2012)
  29. 29. Temporal analysis Temporal analysis of the frequency of citation of a country in RSS feeds to detect the media event
  30. 30. Citation of Syria during a time period Le Monde The Times of India The Financial Times The Washington Post
  31. 31. High Complexity Low Complexity Data Aggregation Aggregation Low Information Loss High Information Loss Thèse en informatique de Robin LAMARCHE-PERRIN « ANALYSE MACROSCOPIQUE DES GRANDS SYSTÈMES. Émergence épistémique et agrégation spatio-temporelle », 2013.
  32. 32. Le Monde Le Monde First meeting of the Friends of Syria Violent clashes In Homs Houla massacre Frequency on the whole period
  33. 33. Temporal agregation Frequency of Syria quotations in articles from Le Monde (week level) information loss complexity reduction 30% Civil uprise Armed insurgenry Escalation Ceasefire attempt Rebel offensives Renewed fighting Battles of Damascis & Aleppo Source: Wikipedia, "Syrian civil war"
  34. 34. Information Loss = 0% Le Monde The Times of India The Financial Times The Washington Post
  35. 35. Information Loss = 1% Le Monde The Times of India The Financial Times The Washington Post
  36. 36. Information Loss = 5% Le Monde The Times of India The Financial Times The Washington Post
  37. 37. Information Loss = 10% Le Monde The Times of India The Financial Times The Washington Post
  38. 38. Information Loss = 20% Le Monde The Times of India The Financial Times The Washington Post
  39. 39. Information Loss = 30% Le Monde The Times of India The Financial Times The Washington Post
  40. 40. Information Loss = 30% Le Monde The Times of India Battles of Damascus and Aleppo Battles of Damascus and Aleppo The Financial Times The Washington Post ? Battles of Damascus and Aleppo
  41. 41. Information Loss = 30% Le Monde The Times of India Irregular variation of media attention The Financial Times Regular media attention The Washington Post Significant macro-variation Irregular variation of media attention
  42. 42. Thematic analysis •  Media produce different visions of the World •  Development of a quali-quantitative method for thematic analysis of international media events Giraud, T., M. Severo, « Le périple d’Edward Snowden : analyse quali-quantitative d’un événement médiatique international », Sous révision
  43. 43. Co-citations analysis
  44. 44. Identification of individuals Qualitative analysis of RSS « international » feed of the New York Times (1 January – 31 March 2013) Beauguitte L, Severo M., 2014, « Les flux RSS pour les études territoriales : une analyse de l'individu et ses espaces dans les actualités internationales du New York Times », Colloque « Fronts et frontières des sciences du territoire », 27-28 mars 2014, Paris
  45. 45. Benedict and Francis I in the international RSS feed of NYT Obama and Chavez in the international RSS feed of NYT
  46. 46. Analysis of the source What is the influence of the newsroom’s structure and practices on the RSS feed? M. Severo, « L’information quotidienne face au Web 2.0. La stratégie multiplateforme de six quotidiens nationaux français », Etudes de communication, n. 41, sous presse.
  47. 47. Geomedia data Advantages •  Large amounts of data •  Complexity of data •  Easily accessible and storable data •  Known sources of information •  RSS « International » as a light sensor •  Temporal and spatial information Backwards •  Need for a quali-quantitative approach •  Lack of historical depth •  Unknown context of the source •  Inability to achieve global coverage •  Difficulty in identifying the events and themes
  48. 48. Thank you for the attention http://geomedia.hypotheses.org marta.severo@univ-lille3.fr

×