Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Biodiversity conservation: genetic diversity and deadwood

1,523 views

Published on

Biodiversity conservation, genetic diversity and deadwood, Fagus sylvatica, Betula pendula, Quercus robur, Aesculus hippocastanum, habitat fragmentation, dendrology, forest pathology, environmental research, geographical genetics, macroecology, conservation biogeography

Published in: Education
  • Be the first to comment

  • Be the first to like this

Biodiversity conservation: genetic diversity and deadwood

  1. 1. Biodiversity Conservation – week 3 London Metropolitan Univ. - 2010 Marco Pautasso (marpauta at gmail.com)
  2. 2. Biodiversity Conservation main topics – week 3Conservation of genetic diversity Biodiversity and deadwood
  3. 3. Fagus sylvatica - European beech: bark vs. seedlingSources: Kew Gardens (2009) and Wikimedia Commons
  4. 4. Fagus sylvatica - European beech: seedlingSource:WikimediaCommons, Germany - May 2005
  5. 5. Source:WikimediaCommons, Poland - April 2004
  6. 6. Fagus sylvatica: early springSource:WikimediaCommons, Denmark – May 2005
  7. 7. Fagus sylvatica in autumnSource:WikimediaCommons, Scotland – November 2006
  8. 8. Fagus sylvatica: geographical distributionSvenning & Skov (2004) Ecology Letters and Global Biodiversity Information Facility
  9. 9. Source: Euforgen
  10. 10. Betula pendula – silver birchSource:WikimediaCommons, Finland
  11. 11. Betula pendulaSource:WikimediaCommons
  12. 12. Source:Euforgen
  13. 13. Quercus robur: pedunculate oakSource:WikimediaCommons
  14. 14. Quercus robur, pedunculate oak: leaf and acornsSource:WikimediaCommons
  15. 15. Quercus roburSource:WikimediaCommons
  16. 16. Source:Euforgen
  17. 17. Aesculus hippocastanum: horse chestnutSource:WikimediaCommons
  18. 18. Cameraria ohridella: the horse chestnut leaf minerSources: Forest Research (UK) and Wikimedia Commons
  19. 19. Cameraria ohridella: the horse chestnut leaf minerSource: Wikimedia Commons (France, August 2007) and DAISIE (EU)
  20. 20. Aesculus hippocastanum: horse chestnutSource: Carl Larsson, Under theWikimedia Chestnut Tree (1912)Commons
  21. 21. Source: Camille Pissarro,Wikimedia Les chataigniers à Osny (1873)Commons
  22. 22. Castanea sativa: sweet chestnutSource:WikimediaCommons
  23. 23. Castanea sativa: sweet chestnutSource:WikimediaCommons
  24. 24. Source:Euforgen
  25. 25. Source:Euforgen
  26. 26. Carpinus betulus: hornbeamSource:WikimediaCommons
  27. 27. Carpinus betulus: hornbeamSource:WikimediaCommons, Köln, Germany
  28. 28. Carpinus betulus: hornbeamSource: Svenning & Skov (2004) Ecology Letters & Norfolk Wildlife Trust
  29. 29. Acer pseudoplatanus: sycamoreSource: Wikimedia commons
  30. 30. Rhytisma acerinum on Acer pseudoplatanusSource:WikimediaCommons
  31. 31. Source:Euforgen
  32. 32. Platanus x hispanica – London planeSource:Wikimedia Commons
  33. 33. Platanus x hispanica – London planeSource:Wikimedia Commons
  34. 34. Platanus vs. AcerSource:Wikimedia Commons
  35. 35. Ulmus spp. (elms)Source:Wikimedia Commons
  36. 36. Source:Euforgen
  37. 37. Fraxinus excelsior - common ashSource:Wikimedia Commons
  38. 38. Fraxinus excelsior - common ashSource:Wikimedia Commons
  39. 39. Source:Euforgen
  40. 40. Tilia cordata – small-leaved limeSource:Wikimedia Commons
  41. 41. Tilia cordata – small-leaved limeSource: Wikimedia Commons
  42. 42. Source:Euforgen
  43. 43. Ficus carica – fig treeSource: Kew Gardens, Autumn 2009
  44. 44. Ficus carica – fig tree Source: Kew Gardens, May 2009
  45. 45. A selection of 12 UK tree species •European beech – Fagus sylvatica •Silver birch – Betula pendula •Pedunculate oak – Quercus robur •Horse chestnut – Aesculus hippocastanum •Sweet chestnut – Castanea sativa •Hornbeam – Carpinus betulus •Sycamore – Acer pseudoplatanus •London plane – Platanus x hispanica •Elms - Ulmus spp. •Common ash – Fraxinus excelsior •Small-leaved lime – Tilia cordata •Fig tree – Ficus carica
  46. 46. (a) (b)(c) (d) Source: Wikimedia Commons
  47. 47. (e) (f)(g) (h) Source: Wikimedia Commons
  48. 48. (i) (j) (k) Source: Wikimedia
  49. 49. Pinus sylvestris – Scots pineSource: Wikimedia Commons
  50. 50. Pinus sylvestris – Scots pineSource: Wikimedia Commons
  51. 51. Source:Euforgen
  52. 52. Pinus sylvestris – Scots pineScotland (Cairngorms) FinlandSpain (Sierra de Guadarrama) Georgia (Caucasus)Source: Wikimedia Commons
  53. 53. Pinus sylvestris – Scots pineSource: Wikimedia Commons
  54. 54. Source:Euforgen
  55. 55. Pinus pinea – stone pineSource: Kew Gardens
  56. 56. Pinus pinea – genetic diversitySource: Vendramin et al. (2008) Evolution
  57. 57. Taxus wallichiana – genetic diversitySource: Gao et al. (2007) Molecular Ecology
  58. 58. Populus tremula and P. alba – genetic diversitySource: Fussi et al. (2010) Tree Genetics and Genomes
  59. 59. Summary •Genetic diversity is an important component of biodiversity •It provides adaptation potential to new environmental conditions •Conservation has often been neglectedgeographical patterns in genetic diversity•However, there is a remarkable increase in research on conservation genetics
  60. 60. Are the main threats to biodiversity also affecting genetic diversity?Habitat fragmentation, degradation and loss Water, air and soil pollution Species introductions Climate change ? GENETIC DIVERSITY
  61. 61. The importance of deadwoodSource: WSL, CH
  62. 62. Snags vs. logsSource: Wikimedia Commons & WSL, CH
  63. 63. Ancient trees → deadwood → biodiversitySource: Kew Gardens, Spring 2009
  64. 64. Snags vs. logsSource: Wikimedia Commons & WSL, CH
  65. 65. Snags vs. logsSource: Wikimedia Commons & WSL, CH
  66. 66. Summary •Deadwood is fundamental for biodiversity, but has been often reduced by mankind •It provides habitat for many fungal, lichen and bryophyte, arthropod, mammal and bird species •Variable types of deadwood are needed fordifferent saproxylic (deadwood-dependent) species •Both downed and standing deadwood are important
  67. 67. Wood decay = biodiversity % tons/ha % VerkerkSource: WSL, CH et al. 2009
  68. 68. [CO2]from MacKay (2009) Sustainable Energy
  69. 69. CO2 emissions (2000) per continentfrom MacKay (2009) Sustainable Energy
  70. 70. CO2 emissions (2000) per countryfrom MacKay (2009) Sustainable Energy
  71. 71. CO2 emissions (cumulative: 1880-2004) per countryfrom MacKay (2009) Sustainable Energy
  72. 72. CO2 emissions since 2000: scenarios vs. datafrom MacKay (2009) Sustainable Energy
  73. 73. from MacKay (2009) Sustainable Energy
  74. 74. from MacKay(2009) SustainableEnergy
  75. 75. from MacKay (2009) Sustainable Energy
  76. 76. Human population densitiesfrom MacKay (2009) Sustainable Energy
  77. 77. Human population densities: USA vs. Europefrom MacKay (2009) Sustainable Energy
  78. 78. Human population density vs. energy consumptionfrom MacKay (2009) Sustainable Energy
  79. 79. Human population density vs. energy consumptionfrom MacKay (2009) Sustainable Energy
  80. 80. ReferencesBarbosa AM, Fontaneto D, Marini L & Pautasso M (2010) Positive regional species–people correlations: a sampling artefact or a key issue forsustainable development? Animal Conservation 13: 446-447Cantarello E, Steck CE, Fontana P, Fontaneto D, Marini L & Pautasso M (2010) A multi-scale study of Orthoptera species richness and humanpopulation size controlling for sampling effort. Naturwissenschaften 97: 265-271Golding J, Güsewell S, Kreft H, Kuzevanov VY, Lehvävirta S, Parmentier I & Pautasso M (2010) Species-richness patterns of the living collectionsof the worlds botanic gardens: a matter of socio-economics? Annals of Botany 105: 689-696Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspectives in Plant Ecology, Systematics & Evolution 11: 157-189Pautasso M & Chiarucci A (2008) A test of the scale-dependence of the species abundance-people correlation for veteran trees in Italy. Annals ofBotany 101: 709-715Pautasso M & Dinetti M (2009) Avian species richness, human population and protected areas across Italy’s regions. Environmental Conservation36: 22-31Pautasso M & Fontaneto D (2008) A test of the species-people correlation for stream macro-invertebrates in European countries. EcologicalApplications 18: 1842-1849Pautasso M & Parmentier I (2007) Are the living collections of the world’s botanical gardens following species-richness patterns observed in naturalecosystems? Botanica Helvetica 117: 15-28Pautasso M & Powell G (2009) Aphid biodiversity is correlated with human population in European countries. Oecologia 160: 839-846Pautasso M & Weisberg PJ (2008) Density-area relationships: the importance of the zeros. Global Ecology and Biogeography 17: 203-210Pautasso M & Zotti M (2009) Macrofungal taxa and human population in Italys regions. Biodiversity & Conservation 18: 473-485Pautasso M et al (2010) Plant health and global change – some implications for landscape management. Biological Reviews 85: 729-755Pautasso M et al (2011) Global macroecology of bird assemblages in urbanized and semi-natural ecosystems. Global Ecology & Biogeography 20:426-436Pecher C, Fritz S, Marini L, Fontaneto D & Pautasso M (2010) Scale-dependence of the correlation between human population and the speciesrichness of stream macroinvertebrates. Basic Applied Ecology 11: 272-280Schlick-Steiner B, Steiner F & Pautasso M (2008) Ants and people: a test of two mechanisms behind the large-scale human-biodiversity correlationfor Formicidae in Europe. Journal of Biogeography 35: 2195-2206Steck CE & Pautasso M (2008) Human population, grasshopper and plant species richness in European countries. Acta Oecologica 34: 303-310

×