Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Climate change and destination choices


Published on

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Climate change and destination choices

  1. 1.     CESAR  WORKING  DOCUMENT  SERIES   Project  1,  working  document  no.1               Climate  change  effects  on  destination  choices   for  daily  activities  in  the  Randstad  Holland     Second  climate  change  analysis  on  Dutch  National  Travel  Survey  (MON)  data       L.  Böcker,  J.Prillwitz  and  M.Dijst     19  March  2012             This  working  document  series  is  a  joint  initiative  of  the  University  of  Amsterdam,    Utrecht  University,  Wageningen  University  and   Research  centre  and  TNO               The  research  that  is  presented  in  this  series  is  financed  by  the  NWO  program  on  Sustainable  Accessibility  of  the  Randstad:        
  2. 2. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  2     TABLE  OF  CONTENT   1.   INTRODUCTION................................................................................................................ 3   2.   RESEARCH  DESIGN........................................................................................................... 3   3.   ANALYSIS.......................................................................................................................... 5   4.   REFERENCES................................................................................................................... 12      
  3. 3. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  3     1. INTRODUCTION   In  the  light  of  a  growing  societal  interest  for  climate  change  adaptation,  various  recent  studies  have   looked  into  the  relationship  between  climate/weather  and  a  variety  of  daily  travel  choices,  such  as   choices   for   transport   modes,   departure   times   and   routes   (see   for   an   overview   of   the   literature   Koetse  and  Rietveld,  2009  and  Böcker,  et  al,  submitted),  as  well  as  on  long  term  preferences  for   tourism  destinations  (Nicholls  and  Amelung,  2008;  Amelung  and  Viner,  2006;  Hamilton  et  al.,  2005;   Bigano   et   al.,   2006;   Matzarakis   and   De   Freitas   2001).   However,   the   impact   on   daily   destination   choices   has   largely   been   neglected   by   these   contributions.   This   is   remarkable,   since   the   role   of   changing  weather  patterns  for  daily  destination  choices  is  highly  relevant  from  a  geographical  point   of   view.   One   can   think   of   citizens   escaping   inner-­‐city   heat   to   recreational   sites   and   shopping   complexes   outside   cities,   or   a   switch   from   active   outdoor   to   inactive   indoor   activities   with   increasing  periods  of  precipitation.                Consequently,  this  study  analyses  the  effects  of  projected  climate  change  on  the  demand  for   different   types   of   activity-­‐destinations   (like   indoor/outdoor   and   recreational/maintenance)   in   different  urban,  suburban  and  rural  residential  environments  in  the  Dutch  Randstad.  This  working   document  presents  the  research  design  and  preliminary  analyses  of  seasonal  climate  change  effects   on   destination   choices   in   the   Randstad   Holland.   First   the   research   design   will   be   outlined.   Thereafter  an  analysis  will  be  provided  of  the  effects  of  climate  change  on:  the  balance  between   leisure  and  utilitarian  activities;  the  participation  into  various  activities;  destination  locations;  and   travelled  distances  in  the  Randstad  Holland. 2. RESEARCH  DESIGN   This  research  is  located  in  the  Randstad  Holland.  The  densely  populated  region  is  located  in  the  west   of  the  Netherlands,  spanning  the  area  around  the  four  largest  cities  Amsterdam,  Rotterdam,  The   Hague   and   Utrecht.   This   region   forms   the   study   area   of   the   CESAR-­‐project   (Climate   and   Environmental   change   and   Sustainable   Accessibility   of   the   Randstad)   on   sustainable   urbanisation   and   accessibility   in   which   this   study   is   embedded   (     This  study’s  research  design  is  similar  to  an  earlier  research  on  climate  change  effects  on   mode  choices  and  travelled  distances  (Böcker  et  al.,  submitted).  Based  on  Randstad  meteorological   records   (KNMI,   2011)   and   four   regional   climate   change   scenarios   reflecting   variations   in   global   temperature  rise  (+1  to  +2˚C)  and  prevailing  wind  patterns  (KNMI,  2009),  we  estimate  present  as   well  as  2050  seasonal  averages.  In  order  to  analyse  climate  change  effects  we  select,  from  the  last   decade,  seasons  with  average  weather  conditions  for  the  climate  at  present  as  well  as  seasons  with   weather   conditions   projected   to   be   average   in   2050   (KNMI,   2009).   Selected   seasons   represent   precipitation  and  temperature  patterns  as  accurately  as  possible.  To  address  not  only  amounts  but   also  distributions  of  precipitation,  we  include  seasonal  precipitation  sums  as  well  as  numbers  of  wet   days   (≥0.1mm).   With   regard   to   temperature,   seasons   at   the   higher   end   of   the   projected   2050-­‐ bandwidth  are  preferred,  as  underlying  climate  scenarios  for  these  are  more  likely  to  occur  (KNMI,   2009).  If  necessary,  precipitation  is  valued  over  temperature  as  a  selection  criterion,  because  of  its   higher  significance  for  travel  behaviour  in  the  literature  (e.g.  Cools  and  other,  2010).   Table  1  presents  shows  the  selected  seasons.  At  present,  the  Randstad  Holland  is  subjected   to  a  maritime  climate  characterised  by  warm  summers,  mild  winters  with  moderate  but  relatively   stable   year-­‐round   precipitation.   For   2050,   winters   are   projected   to   become   much   milder   and   wetter;  springs  warmer  and  wetter;  summers  hotter  with  at  periods  heavier  precipitation  as  well  as   more   intensive   drought;   and   autumns   will   become   warmer   with   also   at   periods   intensified   precipitation  as  well  as  drought,  although  less  than  in  summer.    
  4. 4. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  4     Table 1: Overview of changing climate patterns present-2050 in the Netherlands, for the selected seasons Temperature Precipitation Selected season Average in ˚C Seasonal sum in mm # of days ≥0.1mm Present 2050 Present 2050 Present 2050 Present 2050 Winter 2004/05 2007/08 3.6 5.1 176 218 50 47 Spring 2005 2008 9.8 10.2 152 197 57 49 Summer 2009 2006 17.4 18.5 180 263 43 38 Autumn 2008 2005 10.2 12.0 267 241 50 43 Source: Böcker et al., forthcoming From  2004-­‐2009  Dutch  National  Travel  Survey  data  (Mobiliteitsonderzoek  Nederland)  we  analyse   activity  data  for  the  selected  seasons.  The  total  annual  number  of  respondents  varies  from  around   66,000  in  2004  to  40,000  in  2009.  From  a  sub-­‐sample  of  participants  living  in  the  Randstad  region   with   the   age   of   18   years   and   older,   we   select   heads   of   households   and   their   partners   only.  For   different  activity  destinations  –  work/study,  maintenance  (including  shopping  under  30  minutes),   picking  up  persons,  social  visit,  leisure-­‐shopping  (30  minutes  or  longer),  leisure-­‐touring  and  leisure-­‐ other   –   we   analyse   seasonal   climate   change   effects   on   demand   and   location   choice   in   terms   of   travelled  distance  and  urbanization  degree.  Unfourtunately,  an  exact  subdivision  between  indoors   and  outdoors  leisure  activities  could  not  be  made  from  the  existing  data.  Generally,  however,  the   leisure   touring   category   comprises   activities   with   a   more   outdoors   character   (recreational   trips,   including  walking/cycling  tours),  whereas  the  leisure  other  category  includes,  in  addition  to  some   activities   that   could   be   either   indoors   or   outdoors   (hobby,   sports),   a   lot   of   typically   indoors   activities  (cultural  activities,  church,  community  center,  etc).       In  the  multivariate  part  we  control  for  various  independent  individual/household  attributes   and  spatio-­‐temporal  attributes  in  which  trips  are  situated.  As  individual  attributes  we  include  age,   gender,   education   level   and   workweek   duration.   We   include   the   household   attributes   car   availability,  household  income,  and  household  type.  The  latter  is  a  typology  based  on  household   size,  presence  of  children  under  the  age  of  12,  and  the  number  of  adults  participating  in  the  labour   market.   As   spatial   attributes   we   include   address   densities   of   the   destination   and   the   place   of   residence  and  as  temporal  attributes  we  include  activity  timing  in  view  of  day/night,  peak/off-­‐peak   and  weekday/weekend.  Figure  1  summarizes  all  variables  into  a  conceptual  framework.     Figure  1:  Conceptual  framework  of  variables  used      
  5. 5. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  5     Activity  demand  is  estimated  in  terms  of  the  number  of  trips  per  person  per  day.  Hereby  use  is   made  of  negative  binomial  regression  models,  which,  unlike  Poisson  regression,  can  deal  with  over-­‐ dispersed  count-­‐data  with  excess  zeros  generated  by  the  large  number  of  people  not  participating   certain  activities  on  a  day.  Travelled  distance  is  estimated  per  trip  by  regression  analyses.  Activity   location  is  estimated  with  binary  logistic  regressions  in  terms  of  whether  or  not  people  on  the  day   of   enquiry   made   a   trip   towards   locations   of   varying   urbanization   degrees   subdivided   into   five   classes.  For  all  analyses  separate  models  are  estimated  for  the  different  activity  types.  In  order  to   address   seasonal   climate   change   effects,   they   are   conducted   for   the   full   sample   and   thereafter   repeated  for  the  four  separate  seasons.       3. ANALYSIS   3.1 Recreational  and  utilitarian  trip  generation   In  the  literature  we  have  encountered  that  on  a  daily  level  under  dry  and  moderately  warm  weather   conditions,  people  generally  perform  more,  or  cancel  less,  recreational  trips,  than  under  wet,  cold  or   very  hot  weather  conditions,  whereas  utilitarian  trips  remain  more  or  less  unaffected  (Aaheim  and   Hauge,  2005;  Sabir,  2011;  Cools  et  al,  2010).  Projected  for  the  Randstad  climate  change  generates   warmer   weather   in   all   seasons   in   2050.   Especially   in   winter   the   temperature   effect   may   have   positive   effects   on   recreational   activities,   whereas   an   extra   increase   in   summer   temperature   will   not,  and  may  on  the  contrary  at  days  have  a  negative  effect.  However  in  winter  and  spring  also   precipitation  increases,  which  could  counter  the  positive  effect  on  recreational  trips.     In  order  to  address  whether  people  adjust  their  number  of  recreational  and  utilitarian  trip   to  changing  climate  conditions,  we  descriptively  analyse  the  number  of  recreational  and  utilitarian   trips.  Hereby  recreational  trips  include  trips  made  for  social  and  leisure  purposes  including  shopping   trips  longer  than  half  an  hour.  Utilitarian  trips  include  trips  with  the  purpose  of  work/study,  errands   and  the  bringing  or  picking  up  of  people.  It  appears  that  in  winter,  spring  and  summer,  as  well  as   year-­‐round,  people  approximately  make  as  many  recreational  trips  as  utilitarian  trips,  and  that  this   ratio   remains   relatively   stable   when   we   compare   2050   to   present   seasons.   In   autumn   a   slight   increase  in  the  share  of  recreational  over  utilitarian  trips  can  be  observed  from  44%  at  present  to   47%   in   2050.   Although   these   figures   do   not   point   at   clear   climate   change   effects,   we   perform   a   multivariate   analysis   to   see   whether   effects   appear   when   controlled   for   various   background   variables.   The   five   binary   logistic   regressions   –   one   for   each   season   and   one   for   the   full   year   –   presented   in   Table   1,   show   the   effects   for   various   independent   background   variables,   including   climate  change,  on  whether  a  trip  is  recreational  or  utilitarian.  The  impacts  of  socio-­‐demographic,   household  and  temporal  attributes  are  as  could  be  expected,  with  for  instance  more  recreational   trips  for  elderly,  couples  and  singles,  especially  those  who  work  less,  and  for  trips  off-­‐peak  and  in   the  weekend.       Table 1: Determinants for the ratio between recreational and utilitarian trips   Binary logistic regression: Recreational trip generation (ref. = utilitarian trips) Winter Spring Summer Autumn All B S.E. B S.E. B S.E. B S.E. B S.E. Constant 1,461*** ,160 1,521 *** ,160 1,394 *** ,168 ,791 *** ,160 1,289 *** ,080 Age (ref.=30-49) 18-29 -,110 ,086 ,068 ,090 ,060 ,090 ,028 ,090 ,007 ,044 50-64 ,107* ,065 -,002 ,065 ,022 ,063 ,155 ** ,063 ,061 * ,032 65-75 ,442*** ,105 ,055 ,104 ,053 ,103 ,539 *** ,108 ,255 *** ,052 75+ ,421*** ,129 ,037 ,128 ,008 ,130 ,502 *** ,129 ,222 *** ,064
  6. 6. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  6     Gender (ref.=female) male -,295*** ,052 -,210 *** ,054 -,218 *** ,051 -,214 *** ,053 -,229 *** ,026 Education (ref.= higher) lower_education -,068 ,059 -,046 ,060 ,033 ,059 -,019 ,059 -,020 ,029 middle_education -,152*** ,054 -,056 ,056 -,046 ,055 -,126 ** ,056 -,096 *** ,027 Work duration (ref. <12h/w) >30 hours/week -,621*** ,082 -,520 *** ,082 -,564 *** ,082 -,565 *** ,081 -,556 *** ,040 12-30 hours/week -,630*** ,084 -,416 *** ,087 -,307 *** ,088 -,313 *** ,084 -,410 *** ,043 Household type (ref.= family. 2 workers) family 1 or no worker -,321*** ,109 -,225 ** ,107 -,094 ,117 -,097 ,113 -,167 *** ,055 couple 1 worker ,250** ,109 ,414 *** ,115 ,409 *** ,115 ,510 *** ,113 ,407 *** ,056 couple 2 workers ,282*** ,081 ,130 ,088 ,373 *** ,085 ,448 *** ,084 ,324 *** ,042 couple no worker ,436*** ,122 ,685 *** ,125 ,559 *** ,125 ,527 *** ,126 ,574 *** ,062 single and worker ,111 ,104 ,254 ** ,104 ,340 *** ,103 ,389 *** ,108 ,303 *** ,052 single no worker ,433*** ,141 ,601 *** ,145 ,561 *** ,143 ,528 *** ,142 ,553 *** ,071 other ,209*** ,080 ,218 *** ,083 ,273 *** ,083 ,252 *** ,081 ,251 *** ,041 Household income (ref.<15K) 15,000 to 29,999 euros ,141 ,096 -,162 ,099 -,112 ,100 ,302 *** ,097 ,048 ,049 30,000 euros or more ,015 ,098 -,022 ,103 -,085 ,103 ,165 * ,098 ,033 ,050 unknown ,066 ,101 ,055 ,109 -,195 * ,107 ,052 ,103 ,006 ,052 Car ownership (ref.=no car) 2 cars or more ,062 ,093 -,034 ,090 ,096 ,092 ,049 ,095 ,036 ,046 1 car and main driver ,019 ,081 ,044 ,078 ,044 ,080 -,028 ,083 ,018 ,040 1 car. not main driver ,011 ,095 ,111 ,092 ,207 ** ,093 ,146 ,097 ,121 ** ,047 Geographical context address density residence ,006 ,016 -,023 ,017 -,015 ,017 ,000 ,017 -,009 ,008 address density destination -,014 ,013 -,015 ,014 -,020 ,014 ,006 ,014 -,011 ,007 Temporal context weekend (ref. = weekday) -1,440*** ,054 -1,286 *** ,055 -1,284 *** ,055 -1,336 *** ,056 -1,329 *** ,027 night (ref. = day) ,545*** ,054 ,224 *** ,085 ,165 ,129 ,416 *** ,061 ,318 *** ,032 peak (ref. = off-peak) -2,570*** ,094 -2,118 *** ,087 -1,917 *** ,082 -2,099 *** ,084 -2,143 *** ,043 2050 Climate change ,019 ,044 -,097 ** ,047 ,047 ,047 ,131 *** ,047 ,012 ,022 Goodness of fit Pseudo R2 (Nagelkerke) .342 .302 .271 .314 .304 *p<0.10; **p<0.05; ***p<0.01     When  tested  multivariately,  in  spring  a  significant  decrease  in  recreational  trips  can  be  observed,   which  may  have  to  do  with  the  fact  that  in  spring  2050  weather  conditions  not  only  got  warmer  but   also  wetter.  In  line  with  the  descriptives  a  positive  effect  can  be  observed  in  autumn,  which  could  be   explained  by  the  combination  of  warmer  weather  with  an  increasing  number  of  dry  days  in  the  2050   autumn   season:   conditions   under   which   we   expected   people   to   participate   more   in   recreational  
  7. 7. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  7     trips.  During  the  other  seasons,  temperature  also  increases  but  this  is  accompanied  by  an  increase   in  (heavy)  precipitation.  As  with  the  descriptives,  no  significant  climate  change  effects  have  been   found  on  the  ratio  between  utilitarian  and  recreational  trips  in  winter  and  summer  as  well  as  year-­‐ round.  Overall,  therefore,  seasonal  climate  change  effects  on  the  ratio  between  recreational  and   utilitarian   trips   may   seem   quite   marginal.   When   put   in   perspective,   this   is   however   not   entirely   surprising,  as  it  may  be  questioned  whether  substitution  between  leisure  and  utilitarian  activities,  as   observed  in  the  literature  on  a  daily  level,  may  actually  take  place  on  a  seasonal  level.       3.2 Trip  generation  and  travelled  distances  for  different  activity  types   In  section  4.1  we  observed  a  relative  decrease  in  leisure  over  utilitarian  activities  in  spring  and  a   relative  increase  in  autumn.  However  from  this  ratio  we  cannot  conclude  which  changes  in  absolute   terms   take   place.   Neither,   it   becomes   clear   exactly   which   different   types   of   utilitarian   and   recreational  trips  are  affected  by  climate  change.  In  this  section  we  will  therefore  subdivide  within   recreational  as  well  as  utilitarian  trips  between  different  activity  types.  Based  on  the  literature  we   expect   that   the   participation   in   different   types   of   recreational   activities   is   more   subjected   to   changing  weather  conditions  than  that  in  utilitarian  activities  (e.g.  Cools  et  al.,  2010;  Brandenburg   et  al.,  2004).  In  the  literature  we  have  also  encountered  that  physical  activities  (e.g.  Chan  and  Ryan,   2009)  outdoor  leisure  activities  (Spinney  and  Millward,  2010)  and  walking/cycling  trips  (e.g.  Keay,   1992;   Aultman-­‐Hall,   2010)   are   positively   affected   by   warm   and   dry   weather   conditions   and   negatively  by  wet,  cold  or  very  hot  weather  conditions.  Hence  our  expectation  is  to  observe  within   the   recreational   sphere   an   increase   in   leisure-­‐touring   activities   in   the   slightly   wetter   but   much   milder   2050-­‐winters,   and   an   opposed   effect   in   the   hot   2050-­‐summers   with   increased   heavy   precipitation  and  drought.  For  the  generally  more  indoor  and  less  active  leisure-­‐other  and  leisure   shopping  categories,  which  are  competing  within  the  same  leisure  time  budget  as  leisure-­‐touring   and   partially   satisfy   the   same   needs   (Nijland   et   al.,   2011),   we   expect   reversed   effects   due   to   potential  substitution.     Figure  2  presents  the  relative  impact  of  seasonal  climate  change  effects  on  various  activity   types  expressed  in  per  cent  changes.  The  activities  are  ordered,  based  on  the  size  (not  direction)  of   climate  change  impact  summed  up  for  the  different  seasons,  with  maintenance  activities  on  the  left   resembling  the  smallest  impact  and  leisure  touring  activities  showing  the  highest  impact.  In  line   with  the  literature  and  our  expectations  Figure  2  clearly  demonstrates  that  the  participation  into   recreational   activities,   such   as   the   leisure   other   and   leisure   touring   categories,   is   much   more   sensitive  to  climate  change  than  the  participation  into  utilitarian  activities  such  as  work/study  and   maintenance.     Figure 2: Seasonal climate change effects on per cent changes in number of trips per person per day for different activity types
  8. 8. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  8     Two   exceptions   here   are   the   relatively   higher   climate   change   impact   on   more   or   less   utilitarian   category  of  bringing  and  picking  up  persons,  and  the  relatively  lower  climate  change  impact  on  the   more  or  less  recreational  category  of  social  visits.  An  explanation  for  the  first  could  be  that  bringing   or   picking   up   persons   may,   in   some   cases,   be   a   more   voluntary   or   even   recreational   event.   Explanations   for   the   latter   could   be   that   social   visits   cannot   easily   be   substituted   for   by   other   activities  (regardless  of  the  weather  in  a  season  one  wants/needs  to  meet  friends  and  family),  that   social  visits  may  need  to  be  planned  far  in  advance,  and  that  social  home  visits  may  often  be  flexibly   located  indoors  or  outdoors  (as  they  may  be  situated  inside,  in  the  garden  or  on  the  terrace),  and   for  all  these  potential  reasons  are  less  subjected  to  the  weather.  Again  we  will  first  turn  to  the   multivariate  part  before  discussing  into  detail  the  results  in  the  context  of  seasonal  climate  change.   In   order   to   analyse   trip   generation   multivariately,   we   estimated   35   negative   binomial   regression  models:  for  each  activity  type  one  model  per  season  and  one  for  the  full  year.  In  these   models,   climate   change   effects   are   analysed   along   with   the   effects   of   various   individual   and   household  background  predictors.  Table  2  summarizes  only  the  effects  for  climate  change;  we  will   not  go  into  detail  into  the  effects  of  the  other  predictors,  but  upon  checking  their  respective  effects   seemed  logical.     Table 2: Climate change effects on frequencies for various activities Negative binomial models: Climate change effects on # trips/person/day Winter Spring Summer Autumn All seasons B B B B B Work/study -,045 -.019 .085 -,056 -,012 Maintenance -.091 -..099 -.019 .000 -.036 Picking up .294 *** .220 ** -.142 ,190 ** ,071 * Social visit .089 -.019 -.076 .127 * .061 ** Leisure shopping -.032 -.171 *** .188 *** .024 -.018 Leisure touring .475 *** .277 *** -.327 *** -.129 * .097 *** Leisure other -.321 *** -.243 *** .210 *** .207 *** -.088 *** All trips .012 -.025 .020 .008 .005 Goodness of fit: Unscaled deviance/df lies between .43 and .63 and unscaled Pearson Chi2 /df between .71 and 1.66. All full models are significant improvement over intercept-only models (Omnibus-test). In most models the majority of predictors is significant. *p<0.10; **p<0.05; ***p<0.01   In   line   with   the   descriptives   utilitarian   trips   remain   largely   unaffected   by   climate   change.   Work   trips,  remain  largely  unaffected  by  climate  change,  and  so  do  errands  trips.  Climate  change  does   seem  to  strongly  increase  trip  for  bringing  and  picking  up  persons  in  winter.  Additional  analysis  (not   included  in  this  paper)  shows  that  this  is  mostly  an  increase  of  trips  by  active  transport  modes,   indicating  that  it  may  often  involve  people  (parents)  who,  with  the  milder  2050-­‐winter  weather,   more  often  bring  or  pick  up  others  (their  children)  by  foot  or  bicycle.  Also  in  spring  and  autumn  this   category  increases  significantly,  whereas  in  summer  a  non-­‐significant  decrease  is  observed.     Under  recreational  trips  more  significant  climate  change  effects  can  be  found.  In  line  with   the  decriptives  social  visits  are  an  exception.  For  social  visits  we  observe  non-­‐significant  effects  for   all  seasons  except  for  autumn  and  full  year,  when  significant  positive  effect  can  be  identified.  In  line   with  the  decriptives  and  our  expectations,  leisure  touring  trips  increase  highly  significantly  in  the   warmer  and  wetter  2050-­‐winter  and  –spring,  whereas  highly  significant  declines  are  observed  in   the  hotter/warmer  2050-­‐summer  and  -­‐autumn  with  intensified  precipitation  and  drought.  These   effects  on  leisure-­‐touring  coincide  with  the  higher  use  of  active  open-­‐air  transport  modes  in  the   Randstad-­‐Holland   in   2050-­‐winter   and   spring   seasons   in   contrast   to   the   lower   use   of   these   in   summer   and   autumn,   found   in   an   earlier   publication   (Böcker   et   al.,   submitted).   As   expected,   leisure-­‐shopping   and   leisure-­‐other   trips   are   subjected   to   seasonal   climate   change   in   the   exact  
  9. 9. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  9     opposite  directions.  Both  decrease  in  winter  (although  shopping  insignificantly)  and  spring,  while   increasing   significantly   in   summer.   In   autumn,   shopping   non-­‐significantly   decreases   and   leisure-­‐ other  significantly  increases.  Although  comparison  between  the  activities  should  be  made  carefully   (as   of   the   separate   models)   and   substitution   effects   cannot   directly   be   derived,   there   seems   a   strong  indication  that  people  substitute  between  on  the  one  hand  the  more  active  and  outdoors   leisure-­‐touring   activities   and   on   the   other   hand   the   leisure-­‐shopping   and   leisure-­‐other   activities   with  a  more  mixed/indoors  character.   For   travelled   distances   our   expectations   are   less   clear.   Based   on   one   earlier   Norwegian   study   (Aaheim   and   Hauge,   2005),   an   increase   in   leisure   trip   distance   may   be   expected   when   weather   conditions   get   warmer   and   dryer,   whereas   decreases   may   be   expected   when   weather   conditions  get  colder  and  wetter.  This  supports  the  intuitive  way  of  reasoning  that  climate  change   effects   on   trip   frequencies   would   be   more   or   less   in   line   with   the   effects   on   trip   generation.   However,  climate  change  effects  could  also  work  their  way  through  on  travelled  distances  indirectly   via  the  choice  for  transport  modes  –  a  problem  recognised  but  not  accounted  for  by  the  earlier   Norwegian  study  (Aaheim  and  Hauge,  2005)  –  rising  uncertainty  in  our  expectations  about  its  net   effects.   In   order   to   analyse   the   seasonal   climate   change   effects   on   travelled   distance,   for   each   season  and  the  full  year  we  run  separate  regression  models  for  each  of  the  activity  types  and  all   trips  combined.  A  summary  of  these  models  with  regard  to  the  effects  of  climate  change  is  given  in   table  3  and  will  be  compared  to  the  results  on  trip  generation  in  table  2.     Table 3: Summary of seasonal climate change effects on trip distance for different leisure activities OLS regression: Climate change effects on travelled distance (in 0.1 km) per trip Winter Spring Summer Autumn All B Beta B Beta B Beta B Beta B Beta Work/study .004 .003 -.030 -.023 .039 .030 .030 .024 .012 .010 Maintenance -.042 -.036 .005 .004 -.049 * -.041 .026 .022 -.021 -.018 Picking up -.001 -.001 -.090 ** -.072 -.029 -.022 .009 .007 -.007 -.006 Social visit .018 .013 -.084 ** -.057 -.033 -.022 .035 .024 -.011 -.007 Leisure shopping -.037 -.035 -.111 *** -.096 .029 .026 .071 *** .065 -.02 -.01 Leisure Touring -.059 * -.049 .112 *** .087 -.058 -.045 -.011 -.008 .012 .010 Leisure Other -.043 -.034 -.067 ** -.052 -.003 -.002 .076 ** .061 -.015 -.013 All trips -.022 * -.016 -.033 ** -.023 -.001 -.001 .049 *** .035 -.001 -.001 Goodness of fit: R2  values lie between .05 and .15   Notes: For travelled distances the log is taken. *p<0.10; **p<0.05; ***p<0.01   In  line  with  the  effects  on  trip  generation,  travel  distances  for  recreational  trips  are  more  strongly   influenced   by   seasonal   climate   change   those   for   utilitarian   trips.   When   looked   at   the   shoulder   seasons  Tables  2  and  3  show  many  similarities.  Trip  distances  seem  to  be  mostly  influenced  in  the   warmer   and   wetter   2050   spring   season.   Trip   distances   significantly   increase   for   touring   and   significantly  decrease  for  shopping  and  leisure  other,  as  well  as  for  some  of  the  other  activity  types   and  the  average  for  all  trips  combined.  It  seems  that  with  the  increase  in  the  participation  into  the   active  and  outdoors  oriented  leisure-­‐touring  activities  (Table  2),  people  are  also  willing  to  travel   further  for  these  (Table  3).  For  autumn  we  observe,  also  in  line  with  climate  change  effects  on  trip   generation,   a   decrease   in   leisure-­‐touring   trips   (although   non-­‐significant)   and   highly   significant   increases  in  distances  for  shopping  and  leisure-­‐other,  as  well  as  in  the  average  distance  for  all  trips   combined.   However,  when  looked  at  winter  and  summer,  a  comparison  between  Table  2  and  3  reveals   much   dissimilarity.   In   contrast   to   the   number   of   trips,   trip   distances   in   warmer   2050-­‐winters   significantly  decrease  for  touring  trips.  At  the  same  time  we  do  not  observe  a  significant  decrease  in   distances  travelled  in  summer.  Above  all,  climate  change  effects  on  travelled  distance  in  winter  and   summer  seem  to  be  rather  limited,  rising  our  expectation  of  the  interference  of  second  process:   mode   choice.   In   a   previous   study   on   mode   choice   in   the   Randstad   Holland,   we   found   that   the  
  10. 10. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  10     choices   for   active   transport   modes   increase   slightly   in   spring   and   largely   in   winter   conditions   whereas  they  decrease  slightly  in  autumn  and  largely  in  2050-­‐summer  weather  conditions  (Böcker   et   al.,   submitted).   Consequently,   for   instance   warmer   winter   weather   may   on   the   one   hand   enhance   further   travelling   for   leisure   touring,   but   on   the   other   hand   increase   the   use   of   active   transport   modes   –   typically   used   for   shorter   distances   –counteracting   the   former   effect.   Interference   of   the   indirect   effect   via   mode   choices   could   explain   why   in   contrast   to   the   clear   climate  change  effects  on  trip  generation,  its  effects  on  trip  distance  are  less  clear,  especially  in   winter   and   summer   when   climate   change   effects   on   mode   choice   are   strongest   (Böcker   et   al.,   submitted).       3.3 Degree  of  urbanization  of  selected  destinations  for  leisure  activities   For  our  analysis  of  activity  destination  locations  in  terms  of  urbanization  degree,  we  will   focus  our  analysis  on  the  recreational  activities  shopping,  leisure-­‐touring  and  leisure-­‐other   (excluding   social   visits)   for   two   reasons.   First,   in   contrast   to   the   other   activities,   these   leisure   activities   are   generally   more   voluntary,   flexible   and   occassional,   and   as   such   are   expected   to   be   less   fixed   in   time   and   space   and   more   strongly   subjected   to   weather   conditions,  for  which  evidence  has  been  found  throughout  the  literature  (e.g.  Cools  et  al.,   2010;   Brandenburg   et   al.,   2004)   and   which   we   have   seen   in   section   4.2.   Second   these   leisure   activities   are   directly   competing   with   each   other   within   the   same   leisure   time   budget  as  found  in  the  literature  (Nijland  et  al  2011)  and  encountered  in  section  4.2.  Based   on   the   literature   (e.g.   Nikopoulou   and   Lykoudis,   2007)   and   intuitive   reasoning,   our   expectation  is  that  people  stick  to  more  sheltered  inner-­‐city  locations  for  leisure  activities   when  the  weather  conditions  are  colder  or  wetter,  to  benefit  from  the  urban  heat  island   (against   cold)   or   to   be   less   exposed   to   precipitation   or   heavy   wind.   In   contrast,   with   warmer   and   dryer   weather   conditions   we   may   expect   people   to   enjoy   more   weather-­‐ exposed  destinations  outside  the  city.  During  very  hot  weather  conditions,  such  as  in  the   selected  2050-­‐summer,  we  may  –  as  a  result  of  an  escape  of  inner-­‐city  heat  –  also  expect   people   to   select   destinations   outside   cities,   although   we   doubt   whether   this   effect   will   show   on   the   aggregated   seasonal   level.   A   descriptive   overview   of   the   seasonal   climate   change  effects  on  selected  destination  locations  of  various  degrees  of  urbanization  for  the   different  leisure  activities  is  presented  in  figure  3.     Figure 3: Seasonal climate change effects on attendances of destinations of different density for leisure activities, in per cent changes of the number of trips per person per day.
  11. 11. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  11     Figure  3  in  broad  lines  echoes  the  climate  change  effects  on  activity  participation  found   earlier   in   Figure   2,   with   clear   increases   in   touring   destinations   in   winter/spring   and   decreases  in  summer  and  to  a  lesser  extent  autumn,  against  opposed  effects  for  leisure-­‐ other  and  shopping.  But  when  looked  into  more  detail  it  appears  that  for  these  different   leisure  activities  under  changing  weather  conditions  different  locations  are  preferred.  For   instance   in   winter,   very   clearly   it   appears   that   the   increases   in   touring   (found   earlier   in   Figure  2)  are  mostly  taking  place  in  the  more  rural/  suburban  locations  and  not  in  inner-­‐city   areas.   Before   discussing   these   effects   on   leisure   destination   locations   in   the   context   of   seasonal  climate  change,  we  will  first  turn  to  the  multivariate  analysis.  For  all  seasons,  we   modelled   the   effects   of   climate   change,   along   with   various   individual   and   household   background  predictors,  on  the  number  of  trips  per  person  per  day  for  the  different  leisure   activities’   destinations   of   varying   address   density.   Table   4   presents   a   summary   of   the   effects  of  seasonal  climate  change.   Table 4: Summary of seasonal climate change effects on location in terms of urbanization degree Binary logistic regression: Climate change effects on #trips/person/day towards different densities Winter Spring Summer Autumn All B Bet a B Bet a B Beta B Bet a B Bet a Leisure shopping <700 -0,277 0,209 -0,731 *** 0,223 0,028 0,216 0,504 ** 0,222 -0,105 0,097 700-1400 0,057 0,131 -0,146 0,139 0,343 ** 0,143 -0,080 0,149 0,022 0,066 1400-2000 -0,079 0,108 -0,054 0,129 0,000 0,127 0,132 0,135 -0,037 0,059 2000-3500 -0,102 0,094 -0,068 0,104 0,367 *** 0,112 -0,151 0,103 -0,028 0,049 >3500 -0,176 0,125 -0,402 *** 0,150 0,263 * 0,149 0,250 * 0,144 -0,040 0,065 Leisure touring <700 0,346 ** 0,164 0,052 0,173 -0,401 *** 0,140 -0,281 0,174 -0,049 0,078 700-1400 0,640 *** 0,168 0,239 0,173 -0,411 *** 0,142 0,145 0,171 0,170 ** 0,079 1400-2000 0,541 *** 0,174 0,417 ** 0,166 -0,278 * 0,163 0,046 0,189 0,165 * 0,084 2000-3500 -0,029 0,172 0,131 0,164 -0,269 * 0,153 0,156 0,164 0,053 0,078 >3500 -0,047 0,224 0,493 ** 0,206 -0,888 *** 0,192 -0,534 ** 0,211 -0,162 0,101 Leisure other <700 -0,279 * 0,168 -0,400 ** 0,164 0,397 ** 0,182 0,188 0,174 -0,069 0,079 700-1400 -0,607 *** 0,149 -0,051 0,132 0,295 * 0,164 -0,033 0,144 -0,171 ** 0,068 1400-2000 -0,022 0,142 -0,138 0,150 0,342 ** 0,171 0,061 0,148 0,032 0,072
  12. 12. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  12     2000-3500 -0,511 *** 0,138 -0,306 ** 0,147 -0,145 0,158 0,581 *** 0,152 -0,105 0,067 >3500 -0,332 ** 0,157 -0,375 ** 0,177 0,153 0,206 0,263 0,186 -0,158 * 0,082 Goodness of fit: Pseudo R2 (Nagelkerke) range from .015 to .232 and average .085 *p<0.10; **p<0.05; ***p<0.01   In  the  slightly  wetter  but  much  milder  2050-­‐winters  leisure  touring  trips  increase  highly  significantly   towards  locations  with  lower  address  densities,  whereas  towards  higher-­‐density  destinations  this  is   not   the   case   (non-­‐significant   decreases).   According   to   our   expectations   and   the   descriptives   it   seems  that  the  milder  2050  weather  conditions  favour  the  visiting  of  more-­‐exposed  lower  density   areas,  which  are  less  attractive  in  colder  present-­‐day  winters.  At  the  same  time  the  more  indoors   leisure-­‐other   trips   towards   all   urbanization   degrees   decrease   significantly,   with   the   exception   of   medium   density   locations,   which   remain   unaffected.   Also   shopping   trips   are   not   significantly   impacted.   According  to  the  descriptives,  in  the  warmer  and  wetter  2050  spring  seasons  we  can  see   significant   increases   in   touring   trips,   towards   medium   density   locations   (including   many   of   the   cities’  fringes),  as  well  as  in  inner-­‐city  environments  (including  urban  parks).  Touring  in  rural  areas   seems  to  be  less  affected.  Leisure-­‐other  and  shopping  trips  are  negatively  affected,  but  decreases   are  only  significant  for  the  higher  density  locations  and  the  very  rural  locations.       In   hotter   2050-­‐summers   with   increased   heavy   precipitation   and   drought,   leisure   touring   activities  significantly  decrease  for  all  degrees  of  urbanization.  As  in  the  descriptives,  the  decrease   in  general  seems  to  be  stronger  for  lower  density  areas,  which  could  be  related  lack  of  shelter  in   these   areas   to   heavy   rain.   But   the   decrease   in   touring   is   also   exceptionally   high,   and   highly   significant,  for  the  highest  density  areas,  which  could  be  a  result  of  the  unattractiveness  of  these   areas   for   physical   activity   during   heat.   With   regard   to   the   more   indoors/mixed   recreational   alternatives,   leisure-­‐other   activities   increase   mostly   in   lower   density   areas   whereas   leisure   shopping  increases  mostly  in  higher  density  areas.       Of  all  seasons,  in  autumn  location  in  terms  of  urbanization  degree  seems  to  be  least  clearly   affected.  Leisure  touring  seems  to  decrease  for  the  most  rural  (near-­‐to-­‐significant)  and  urban  areas   (significant),  whereas  towards  locations  of  more  medium  density  non-­‐significant  increases  can  be   observed.   Leisure   shopping   significantly   increases   in   very   urban   and   very   rural   areas,   whereas   leisure-­‐other  increases  only  significantly  in  moderately  urban  areas.     As  of  opposite  seasonal  climate  change  effects,  over  the  whole  year  the  net  climate  change   effect   on   destination   location   for   leisure   activities   is   mostly   marginal:   shopping   remains   entirely   unaffected;   touring   seems   to   increase   significantly   only   for   medium   density   destinations;   and   leisure  other  decreases  in  moderately  rural  and  very  urban  areas.  In  this  section  it  became  clear   that  climate  change  highly  affects  the  choices  for  recreational  activities  on  the  seasonal  level,  but   that  in  addition  to  what  we  have  seen  in  section  4.2,  considerable  differences  exist  between  the   generation  of  trips  in  different  geographical  contexts.         References     Amelung,  B.  and  Viner,  D.  (2006)  Mediterranean  tourism:  explaining  the  future  with  the  tourism     climatic  index,  Journal  of  Sustainable  Tourism  14,  pp.  349–366.   Bigano,  A.,  Hamilton,  J.M.  and  Tol,  R.S.J.  (2006)  The  impact  of  climate  change  on  holiday  destination     choice,  Climatic  Change  76,  389–406.   Hamilton,  J.M.,  Maddison,  D.J.  and  Tol,  R.S.J.  (2005)  Climate  change  and  international  tourism:  a     simulation  study,  Global  Environmental  Change,  15,  pp.  253–266.   Koetse,  M.J.  and  Rietveld,  P.  (2009)  The  impact  of  climate  change  and  weather  on  transport:  An     overview  of  empirical  findings,  Transportation  Research  Part  D,  14,  pp.  205-­‐221.  
  13. 13. CESAR  Project  1  working  document  series  no.1     Climate  change  and  destination  choices   Page  13     Matzarakis,  A.  and  De  Vreitas,  C.  (2001)  Proceedings  of  the  First  International  Workshop  on     Climate,  Tourism,  and  Recreation.  International  Society  of  Biometeorology,  Commision  on     Climate  Tourism  and  Recreation.   Nicholls,  S.  and  Amelung,  B.  (2008)  Climate  change  and  tourism  in  Northwestern  Europe:  impacts     and  adaptation,  Tourism  Analysis,  13,  pp.  21-­‐31.